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Charge-reversal instability in mixed bilayer vesicles

Yi Chen and Philip Nelson
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 15 February 2000!

Bilayer vesicles form readily from mixtures of charged and neutral surfactants. When such a mixed vesicle
binds an oppositely charged object, its membrane partially demixes: the adhesion zone recruits more charged
surfactants from the rest of the membrane. Given an unlimited supply of adhering objects one might expect the
vesicle to remain attractive until it was completely covered. Contrary to this expectation, we show that a
vesicle can instead exhibitadhesion saturation,partitioning spontaneously into an attractive zone with definite
area fraction, and a repulsive zone. The latter zone rejects additional incoming objects because counterions on
the interior of the vesicle migrate there, effectively reversing the membrane’s charge. The effect is strongest at
high surface charge densities, low ionic strength, and with thin, impermeable membranes. Adhesion saturation
in such a situation has recently been observed experimentally@H. Aranda-Espinozaet al., Science285, 394
~1999!#.

PACS number~s!: 87.10.1e, 87.16.Dg, 82.65.Dp, 82.70.Dd
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I. INTRODUCTION

The self-assembly of colloidal particles offers an attra
tive route to the synthesis of highly ordered, nanostructu
materials. Typically these materials have been extrem
soft, being stabilized by entropic effects. For example, cl
sical colloidal crystals are three-dimensional arrays of mu
ally repelling spheres@1,2#. Entropic effects maintain thei
crystalline order in spite of a density well below that of clo
packing. As a result, these arrays are easily disrupted
small mechanical shear, dilution, etc. More recently, dep
tion forces have been harnessed to assemble spheres
crystalline arrays on the walls of their container@3#. Again
the physical forces between the spheres are repulsive,
again the resulting arrays are extremely soft.

Attempts to create strong ordered materials from phy
cally attractingcomponents have generally produced inste
highly disordered aggregates. Recently, however, Ramos
co-workers reported the observation of robust tw
dimensional ~2D! crystallites formed from negatively
charged latex spheres introduced into a suspension of bil
vesicles@4,5#. The membranes forming the vesicles cons
of a mixture of positively charged and neutral surfactan
The immense electrostatic attraction between the nega
spheres and positive membranes led to the crystallites’ g
strength; their ordered 2D character arose via the interm
ary role of the vesicles astemplatesfor the initial self-
assembly of the spheres.

In this paper we develop some of the physics of the c
cial intermediate step just mentioned, elaborating and
tending the discussion in@4#. This stage begins when th
latex spheres are first introduced to the vesicle suspens
and lasts for hours to days. Initially the spheres adsorb av
onto the vesicles, and indeed many vesicles become c
pletely covered with spheres. However, a significant s
population of vesicles content themselves with only par
coverage: on these vesicles the adsorbed spheres form aself-
limiting ‘‘raft.’’ Once the raft forms, no further spheres a
tach to the vesicle anywhere, though they are present in
cess. Instead, particles in suspension are seen to appr
PRE 621063-651X/2000/62~2!/2608~12!/$15.00
-
d
ly
-
-

y
-

into

nd

i-
d
nd
-

er
t
.

ve
at
i-

-
x-

n,
ly
m-
-
l

-
x-
ch,

then wander away from, the vesicle.
The theory of colloidal surface interactions is vast~for

introductions, see@6–8#!. Our goal is to introduce a very
simple mechanism for adhesion saturation, summari
graphically in Fig. 1 below, and then present some calcu
tions to show how it works in the parameter regime relev
to experiments. We will argue that our effect should
qualitatively unchanged after many other surface-interac
effects are included in the analysis, but much work rema
to be done to show this in detail. Section II sketches
physics of our mechanism. Section III begins the analy
using linearized Poisson-Boltzmann theory, considering
turn a series of more complicated situations. The lineari
theory is familiar and helps to connect the analysis to
physical picture, but it proves to be inadequate for the int
esting range of parameter values. Thus in Sec. IV we
grade to the full nonlinear theory, which proves to be qu
easy in this context. Finally, we consider the effects of i
correlations, neglected in Poisson-Boltzmann theory, in S
V. A glossary of symbols appears in the Appendix.

II. PHYSICAL PICTURE

We first briefly review the physical picture developed
@4# and summarized in Fig. 1. Consider first two dielect
surfaces bearing fixed charge densitiess6 of the same mag-
nitude but opposite sign in an electrolyte solution. Wh
they are separated by several screening lengths they ‘‘fe
little mutual attraction, since each maintains a neutraliz
cloud of counterions. As the surfaces approach closer, e
tually their screening clouds begin to interpenetrate. Th
negative counterions from the positive surface, and posi
counterions from the negative surface, can escape to infi
without violating overall charge neutrality. The correspon
ing gain in entropy reduces the system’s free energy: co
terion release drives the surfaces into contact.

Next consider the case of two surfaces of opposite s
and unequal magnitude; for instance, suppose thats1

,us2u. In this case counterion release will be incomple
after exhausting all the negative counterions, some posi
2608 ©2000 The American Physical Society
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PRE 62 2609CHARGE-REVERSAL INSTABILITY IN MIXED . . .
ones will remain, trapped by the requirement of charge n
trality. The osmotic pressure of the trapped ions will prev
the surfaces from coming into perfect contact. If one surf
hasvariablecharge density, says1 , then additional surface
charges will be pulled into the contact region in order
improve the contact with the approaching negative surf
@9#. A surface charge density can, for instance, vary beca
the compositionof the surface is variable: for instance, th
surface may be a mixture of charged and neutral surfacta
as in the experiments of@4,5#. In this case the recruitment o
charge to the contact region will deplete the other regions
turn rendering them less attractive to additional negative
electric objects. Figure 1~c! depicts this situation: surfactan
rearrangement in the outer monolayer of the membrane
permitted the release of two more ion pairs than would o
erwise@panel~b!# have been possible.

The rearrangement of membrane charges is limited:
relative concentration of charged surfactants cannot exc
unity. The maximum charge density on the outer monola

FIG. 1. ~a! Cartoon of the situation. A large vesicle of mixe
neutral and positively charged surfactants attracts a limited num
of negatively charged spheres, then saturates. The Debye scre
length, typically about 10 nm, is much smaller than the sizes of
objects.~b! Disposition of counterions when an approaching ne
tive object ~shaded, above right! is still far from the vesicle. The
vesicle interior is at the bottom of the figure. The zeros den
neutral surfactants, plus signs the charged surfactants. Circle6
signs denote counterions in solution. The solid vertical lines join
charges are fictitious elastic tethers representing intuitively the e
tric field lines; the requirement of charge neutrality translates v
ally into the requirement that all charges be tied in this way.~c!
Redistribution of charges when the negative dielectric object
proaches the membrane, if we artificially forbid any electric fie
inside the membrane. Four pairs of counterions have been rele
to infinity ~upper left!. The interior monolayer, and its counterio
cloud, are unchanged from~b!. Zone ‘‘n’’ presents a net of one
positive charge to the vesicle exterior and so remains attractiv
further incoming negative objects.~d! The resulting state after we
relax the constraint of zero electric field inside the membrane,
lowing the ion migrations indicated by the horizontal dashed arro
in ~c!. One additional counterion pair has been released to infi
and the adhesion gap has narrowed. The net charge of the bi
plus interior counterions in zone ‘‘n’’ has reversed sign relative to
~c!, and so this zone repels additional incoming negative obje
~Adapted with permission from@4#. © 1999 American Association
for the Advancement of Science.!
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may still be less than that of the approaching dielectric, a
so the final contact may still be imperfect, as shown in F
1~c!. We will assume this to be the case in the rest of t
paper.

Nevertheless, a further reduction in free energy den
from Fig. 1~c! is still possible, once we remember that th
inner membrane monolayer and its counterions need not
a passive role. Figure 1~d! shows how the remaining trappe
counterions in panel~c! can leave the gap, even if the mem
brane is impermeable, by following the dashed horizon
arrows in panel~c!. After this rearrangement some of th
charge on the negative dielectric is neutralized by surfacta
on the inner monolayer, whose own interior counterions m
grate to the nonadhesion region@10#. Panel~c! also shows a
rearrangement of the surfactants on theinner monolayer, fur-
ther depleting the charge of the noncontact zone.

Figure 1~d! raises an intriguing question: will the migra
tion of interior counterions ever overwhelm and effective
reverse the charge of the membrane as seen from outsid
shown in the figure? Of course, cartoons alone will not se
this question, but we can argue physically that such an ef
may well happen as follows. First we note that the posit
charge density of the noncontact zone ‘‘n’’ is already very
small in Fig. 1~c!, since the interior monolayer and its cou
terion cloud cancel, and as we will see below the elect
static interaction driving the depletion of charged surfacta
from the outer monolayer is very strong. Thus only a sm
migration of interior counterions will suffice to get charg
reversal. Second, the entropiccostof creating a nonuniform
charge density in the interior counterion cloud is quadratic
the amount of charge that migrates, since the uniform dis
bution is an equilibrium state. But the free energygain from
this redistribution is linear in the amount of charge migr
tion, being dominated by the derivatived/ds1 of the attrac-
tive self-energy@see formula~3.9! below#. Thus a finite
amount of counterion migration will occur, and this amou
may well exceed the small net charge on the nonadhe
region, effectively reversing it.

The rest of this paper is devoted to a quantitative just
cation of the intuitive argument just given. Before passing
to the analysis, we should remark on another feature of
1~d!. Charge reversal requires that electric fields~represented
schematically by the vertical lines in the figure! penetrate the
interior of the membrane. Since the membrane interior i
low dielectric constant medium, the energetic cost of th
fields can be significant, another term quadratic in
amount of charge migration from panel~c! to ~d!. If the
membrane is sufficiently thick, this cost will reduce th
charge migration below the point of charge reversal, a po
we will need to examine quantitatively in Sec. IV C below

III. LINEARIZED MEAN-FIELD THEORY

In this section we begin the mathematical implementat
of the ideas in Sec. II. We begin with the linearized~Debye-
Hückel! limit of low charge density, even though ultimate
we will argue that the experiments studied here require a
nonlinear treatment. We do this partly because of the s
plicity of the formulas, and partly to make contact with ea
lier work.

To fix notation and keep the article self-contained we b
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2610 PRE 62YI CHEN AND PHILIP NELSON
gin by rederiving some key results from@11,12,9#. The Ap-
pendix summarizes our units and all symbols used throu
out the paper.

A. Basic formulas

The electrostatic potential energy of a distribution of fr
charges of densityr(r ) is 1

2 *drr(r )c(r ), wherec is the
electric potential@13#. The potential created by a single poi
chargeq in an infinite, uniform, dielectric medium isc(r )
5q/4peur u. In a more complicated situation,c(r ) is related
to r(r 8) by some Green functionG(r ,r 8) and obeys Pois-
son’s equation,¹2c52r/e.

We first imagine a uniform charge distribution of dens
s on the surface$z50% @14#. The half spacez,0 is filled
with a dielectric with no free charges, and so the electric fi
must everywhere vanish here. The other half space is a
valent salt solution in equilibrium with a reservoir at conce
tration n̂. The reservoir must remain neutral, but it can su
ply ion pairs at a cost in free energy given by a chemi
potentialmkBT. The total free energy of the mobile ions ne
the surface is thenF5Fent1Fes, where the entropic and
electrostatic energies in mean-field approximation are@8#

Fent5kBTE dr @n1~ ln n1v021!1n2~ ln n2v021!

2m~n11n2!1j~n12n21nf!#, ~3.1!

Fes5
1
2 E drdr 8 entot~r !G~r ,r 8!entot~r 8!. ~3.2!

In the above formulas,n6 are the number densities of ion
while ntot(r )5r/e5n12n21nf is the total signed density
including fixed surface charges with signed densitynf . We
introduced a Lagrange multiplierj to enforce overall neu-
trality. The symbolv0 is a microscopic volume factor whic
will drop out of all physical results. We have fixed the arb
trary constant inFes by setting the electrostatic energy
zero when the mobile counterions form a sheet coincid
with the fixed surface charge. ThusFes is the work needed to
pull this sheet away from the surface, and so is a posi
quantity.

In equilibrium we havedF/dn6(r )50. Away from the
plane this fixes

n6~r !v05em7@c̄~r !1j#, z.0. ~3.3!

Herec̄5ec/kBT and we have fixed the additive constant
c by choosingc(`)50. Sincen15n25n̂ at infinity, we
get j50 andm5 ln n̂v0, or

n6~r !5n̂e7c̄~r !. ~3.4!

Substituting then gives the free energy

F5kBTn̂E dr @c̄ sinhc̄22 coshc̄1 1
2 ~nf /n̂!c̄12#.

~3.5!
h-

d
ni-
-
-
l

g

e

The last term of Eq.~3.5! is a constant, which we have adde
by hand to cancel a term proportional to the volume of
world.

Equation~3.5! simplifies if the dimensionless potentialc̄
is everywhere much less than 1; in this case we simply

F5kBT*dr 1
2 nfc̄. Since the fixed chargenf is confined to a

plane, the free energy is a purely surface term oncec̄ has
been found.

To find c̄, we note that it satisfies the Poisson equation
property of the Green function used to define it. Using t
charge densityen6(r ) found above in Eq.~3.4! gives the
Poisson-Boltzmann equation,

¹2c̄5
2e2n̂

ekBT
sinhc̄. ~3.6!

Linearizing then gives the familiar Debye-Hu¨ckel equation:

¹2c̄5k2c̄, wherek5A2e2n̂/ekBT.
The objects we want to consider are much bigger than

screening lengthlD51/k @see Fig. 1~a!#. Thus our geometry
is essentially planar, and we need the planar solutionsc̄(z)
5Be6kz to the Debye-Huckel equation. The electric field
then E52“c, which indeed decays exponentially on th
length scalelD .

For a single wall we must choose the decaying solution
Eq. ~3.6!. We fix the constantB by imposing Gauss’s law a
the surface:E52(]c/]z) ẑ5(s/e) ẑ. Then B5se/kekBT,
the solution is

c̄~z!5
se

kekBT
e2kz ~ linearized approximation!,

~3.7!

and the free energy per unit area of the isolated, char
surface is

f self[F/~area!5kBTsB/2e

5s2/2ke ~ linearized approximation!. ~3.8!

Another well-known solution to Eq.~3.6! arises in the
opposite case of very high charge density, wherec̄@1 at the
surface. In this case the Poisson-Boltzmann equation h
solution of ‘‘Gouy-Chapman’’ form: c̄(z)5

ln$(2ekBT/e2n̂)@1/(z1lGC)2#%. Here the free parameter i
the offset lGC, chosen to enforce Gauss’s law:lGC
52ekBT/es. More highly charged surfaces thus ha
smaller lGC and so a more nearly singular potential. T
pathological behavior ofc̄ at largez simply reflects the end
of the regimec̄@1 at large enoughz. Note that the electric
field Ez52kBT/e(z1lGC) of the Gouy-Chapman solution i
independent of the ambient salt concentrationn̂, as it should
be: the electric forces near a highly charged surface dep
only on the surface charge. The salt concentration determ
only the extent of the region in which the strong-field a
proximation is valid.
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PRE 62 2611CHARGE-REVERSAL INSTABILITY IN MIXED . . .
B. Two dielectrics

We minimized the free energy of an isolated surface,
taining Eq.~3.8!. To extract any useful work from this store
free energy, we would have to remove some constraint.
way to do this is to bring in another semi-infinite plan
dielectric @15# bearing opposite surface charge, thus cha
ing the solution region from a half space to a planar slab
thicknessl. Let us suppose that a surface withs1.0 ap-
proaches another surface withs2,0.

Parsegian and Gingell studied this situation in the line
ized approximation@11#, arguing as in Sec. II that the su
faces attract via counterion release until all of one specie
counterions in the gap~the ‘‘minority’’ species! has been
exhausted. Ifs15” us2u, a residual cloud of the other~‘‘ma-
jority’’ ! species remains in the gap and the system eq
brates at a finite gap spacingl * . Nevertheless, the final stat
has less free energy per unit area than it did originally;
difference is theadhesion strength W.

We could computeW by again solving a boundary-valu
problem as in Sec. III A, but there is a shortcut. Suppose
s1,us2u, so that the1 counterions are the ‘‘majority’’
species. In mechanical equilibrium the hydrostatic press
pushing the walls together vanishes. The planar Poiss
Boltzmann equation is a second-order ordinary differen
equation, and so its solutions form a two-parameter fam
One integration constant is fixed by the Gauss law bound
condition on the negative wall, while in equilibrium the oth
is fixed by the condition of vanishing pressure. Hence
solutionc̄(z) is exactly the same for two walls as it is for th
isolated negative wall; the only difference is that in t
former case we truncate the solution atz5 l * , while in the
latter casez extends to infinity. The equilibrium gap spacin
l * is then just the value ofz at which Gauss’s law for the
positive wall is satisfied:2(2]c/]z)5s1 /e. Then Eq.
~3.7! gives the equilibrium spacingl * by ek l

* 5us2 /s1u in
the linearized approximation. Note that indeed the right s
of this formula is positive and greater than unity, as it m
be sincel * >0.

We now recall that the linearized approximation reta
only the boundary term of Eq.~3.5!, so

f gap~s1 ,s2!5
kBT

2e
@s2c̄~0!1s1c̄~ l * !#

5
1

2ke
@~s2!22~s1!2#. ~3.9!

Repeating these steps for the opposite case wheres1

.us2u, we find that in general@Fig. 2~a!#

f gap~s1 ,s2!5u f self~s1!2 f self~s2!u. ~3.10!

Remarkably, the simple combination formula~3.10! will
continue to hold in the full nonlinear Poisson-Boltzma
treatment of Sec. IV A below@16#. Formula ~3.10! is cer-
tainly reasonable: whens15us2u all counterions get re-
leased, the two surfaces coincide, and this was our refer
state of zero energy. Also, when we reverse the signs o
the charges the free energy should not change; Eq.~3.10! has
this property.

Finally we find the adhesion energyW as @9#
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W5 f self~s1!1 f self~s2!2 f gap~s1 ,s2!

5min$~s1!2,~s2!2%/ek ~ linearized approximation!.

~3.11!

Note that W is completely independent of the majorit
charge density, a property noted by Nardiet al. In light of
the physical picture in Sec. II, we can readily interpret th
fact: The total counterion release is limited by thesmallerof
the two counterion populations.

SinceW is always positive we find, as expected, thatop-
positely charged dielectrics always attractvia the
counterion-release mechanism@11#. Of course, this is not the
behavior we were seeking to explain~see Sec. I!. We must
now proceed to generalize the above arguments, incorpo
ing the relevant differences between the above system
the one studied in the experiments of@5#.

C. Thick membrane

We just found that two oppositely charged dielectrics
tract, as expected. But the experiments we are studying
volve dielectric~latex! spheres interacting not with other d
electrics, but with a bilayermembrane. In this subsection we
begin to incorporate the new physics associated with
situation. We first study the interaction of a dielectric
fixed charge densitys2,0 with a positively charged, very
thick membrane, recapitulating some results of Nardiet al.
@9#.

The new physical feature of this situation is that the
layer membranes in the experiments arefluid mixturesof
positively charged and neutral surfactants. This means
the charge densitys1 on the membrane is not a fixed num
ber, but may vary subject tos1.0 and the overall con-
straint that the total membrane charge*dAs1 is fixed. Let
s1,av denote the average charge density, so that the t
membrane charge isAs1,av. In addition, we will suppose
that the charge density cannot exceed a maximum ofsmax
52e/a0 determined by the area per headgroupa0 of the
charged surfactants in each of the two monolayers const
ing the membrane, and thatus2u.smax.

Throughout this paper we will adopt a highly simplifie
generic picture of membrane compositional changes, ret
ing only the entropy of mixing of the two surfactant type

FIG. 2. ~a! Sketch of the electrostatic part of the free ener
@ f gap, formula ~3.10!#, for a thick, mixed membrane approaching
dielectric. We show the case whereus2u.smax. ~b! Sketch of the
total free energy@ f gap1 f m , including formula~3.12!#, illustrating
the Maxwell construction. The features of the curve have been
aggerated for clarity. The membrane will partition into a high
attractive region with charge densitys1

(a) and a somewhat attractiv
region withs1

(n) .
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2612 PRE 62YI CHEN AND PHILIP NELSON
Thus we neglect other entropic or enthalpic packing effe
in the assumed membrane free energyf m. Moreover, at first
we will for simplicity neglect the bilayer structure of th
membrane; later on we will use formulas appropriate to
bilayer. With these simplificationsf m takes the form

f m5
2

a0
kBTF s1

smax
ln

s1

smax
1S 12

s1

smax
D lnS 12

s1

smax
D G .
~3.12!

As discussed in Sec. II, we wish to explore the possibi
of a spontaneous partition of the membrane into two unifo
regions, which we will call zonesa and n. ~Ultimately we
hope to find thata is adhering whilen is nonadhering, but for
the moment these are arbitrary names.! The areas of the two
zones are not known in advance, but they must add up to
total areaA, so we take them to begA and (12g)A, respec-
tively.

The two zones exchange one conserved quantity, nam
membrane charge@17#. Thus the system can divide int
zones of charge densitys1

(a) ands1
(n) , subject to

gs1
(a)1~12g!s1

(n)5s1,av. ~3.13!

This separation will be energetically advantageous if the c
responding total free energyA„g f (s1

(a))1(12g) f (s1
(n))… is

less thanA f(s1,av). Here the free energy densityf (s1) is
computed for auniform zone with fixed membrane charg
densitys1 , minimizing over all other variables.

The instability just described will not occur iff (s1) is a
convex function, i.e.,d2f /ds1

2.0. If d2f /ds1
2 is negative

anywhere within the allowed region 0,s1,smax, we ap-
ply the Maxwell construction from thermodynamics to t
graph of f. This involves drawing a straight line tangent
the graph and spanning the region of concavity. Let the
points of tangency be located ats1

(a) ands1
(n) . If the average

membrane compositions1,av lies between these two value
then the uniform system will be unstable to partitioning in
two zones with compositionss1

(a) ands1
(n) .

In the case of a thick membrane, we havef 5 f gap(s1)
1 f m(s1). Consulting Eqs.~3.10!, ~3.8!, and~3.12!, we find
that the first~electrostatic! term is destabilizing, while the
second~entropic! term is stabilizing. For future use we intro
duce two convenient abbreviations, one parametrizing
relative strengths of the two terms, the other a dimension
measure of charge density:

b[2n̂a0 /k5ka0/4pl B , s̄[s/smax. ~3.14!

With these abbreviations we obtain

f 5
smax

2

2ek
@ u~ s̄2!22~ s̄1!2u

1b„s̄1 ln s̄11~12s̄1!ln~12s̄1!…#

~ linearized approximation!.

Nardi et al. pointed out that this function has an inflectio
point, giving a region of instability@Fig. 2~b!#, when b
,1/2. According to Eq.~3.14!, this means that either th
maximum charge densitye/a0 must be large, or else the sa
ts

a

he

ly,

r-

o

e
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concentrationn̂ very small. Substituting some typical value
for the charge per headgroupa050.5 nm2 and salt concen-
tration n̂51 mM50.0006 nm23 givesb50.006, well into
the regime of instability.

Though we have found an instability, two remarks lim
its interest. First, we have insisted that 0,s1,smax, so of
course the charge densitiess1

(a) and s1
(n) on our two zones

are both positive: both zones are adhesive, unlike the exp
mental phenomenon we are trying to explain. Moreover,
found no instability at all unless the charge densitysmax is
quite large ~recall also thatus2u is assumed to be eve
greater than this!. But at such large charges our linearize
approximation breaks down. Our calculation becomes inc
sistent just as it gets interesting. Much of this paper is de
cated to correcting this deficiency. We ask the reader to s
pend disbelief momentarily while we implement the physic
picture sketched in Sec. II in the linearized theory, where
formulas are simple. Our claim is that the physical picture
robust and holds beyond this inadequate mathema
framework; we will support this claim by improving the ca
culation in Secs. IV and V.

D. Thin, permeable membrane

The previous subsection found that a highly charg
thick membrane can partition into a zone of strong adhes
and a second zone of weaker adhesion. In this subsectio
will introduce another element of realism by accounting
the interior charges in the vesicle. To highlight the key ro
of the membrane as a barrier to counterions, we will fi
study the simpler case of a thin membranepermeableto ions,
finding uniform attraction. This sets the stage for the mo
interesting case of an impermeable membrane in Sec.
below.

Thus the new feature introduced in this subsection is t
a membrane separates the world into two compartme
with electrolyte solution on each side@Fig. 3~a!#. We con-
tinue to neglect the internal structure of the membrane, tr
ing it as a single thin sheet of charge; in Sec. IV C below
will improve the analysis to include the bilayer structure a
finite internal capacitance of real membranes.

To organize the calculation we first note that once ag
there is only one independent conserved quantity exchan
laterally between zones on the membrane, namely,s1 . Let

s in[E
2`

0

dze„n1~z!2n2~z!… ~3.15!

be the areal density of mobile interior counterions. Note t

FIG. 3. ~a! Schematic for the approach of a dielectric to a th
permeable membrane. Negative values ofz in the text refer to the

interior of the vesicle.~b! Sketch of the free energy densityf̄ as a
function of s in , holdings1 fixed.



g-

we
ov
-

or

o

e
ur
an

t
io
ga
rio
ig
e

ec
tio

ili
rs
rt-

ill
ith

ra

p
.

the

this

of
we

or
lec-

ri-
but
s
the
is

nd a
els

in-
ht
of
int
is
ition
ti-
wo

le
ions
of

be
ole
i-
um
ke
e

PRE 62 2613CHARGE-REVERSAL INSTABILITY IN MIXED . . .
unlike s1 , which must be positive and less thansmax, the
interior densitys in can in principle have any sign and ma
nitude. We will holds in fixed while optimizing over the gap
spacingl as in Sec. III B above. Since in this subsection
are assuming a permeable membrane, we then minimize
s in as well to obtainf (s1). We will suppress explicit men
tion of the dependence on the dielectric charges2 , because
s2 is fixed.

The free energy densityf can be regarded as an interi
term from Eq.~3.8!, plus a gap termf gap from Eq. ~3.10!,
plus the membrane free energyf m from Eq. ~3.12!. The in-
terior term is f self(2s in)5(s in)

2/2ek. The gap ‘‘sees’’ op-
posing charge densities ofs2 and (s11s in), so Eq.~3.10!
gives f gap5us2

2 2(s11s in)
2u/2ek and the equilibrium

spacing isl * (s in ,s1)5(1/k)lnus2u/(s11sin).
The membrane free energyf m is independent ofs in , so

minimizing over s in gives s in,* 5us2u2s1 , a positive
value corresponding tol * 50: the membrane comes int
tight contact with the dielectric@Fig. 3~b!#. Evaluating the
free energy at this point gives

f ~s1!5
smax

2

2ek

3@~ us̄2u2s̄1!2

1b„s̄1 ln s̄11~12s̄1!ln~12s̄1!…#. ~3.16!

Computing the second derivative we see that this time ev
term of f is separately convex: there is no instability. O
result is physically reasonable. As the positive membr
approaches the dielectric, the latter’s negative~minority!
counterions and some of the positive~majority! counterions
get released to the exterior. Since we have assumed
membrane is permeable, the remaining positive counter
pass through it, where many more pair up with interior ne
tive ions from the membrane and get released to the inte
Since no counterions need to remain in the gap, we get t
contact between membrane and dielectric, which in eff
become a single object of reduced charge densitys1

2us2u. The electrostatic self-energy of this composite obj
is a convex function, entropy never favors phase separa
and so there is no instability.

E. Thin, impermeable membrane

Previous subsections have shown that charge mob
alone can lead to an instability, but not to charge reve
~Sec. III C!, and that introducing a coupled interior compa
ment alone does not even lead to instability~Sec. III D!.
Surprisingly, in this section and Sec. IV B below, we w
find that combining these two unpromising ingredients w
the hypothesis of a membrane impermeable to ionscan lead
to a charge-reversing instability@18#. The key observation is
that an impermeable membrane hastwo conserved quantities
independently exchanged between zones: the memb
charge s̄1 and the interior counterion charge densitys̄ in

@19#. In the previous subsections̄ in could relax within a zone
by passing through the membrane, and so we simply o
mized f over it before applying the Maxwell construction
er
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For an impermeable membrane we must instead apply
Maxwell construction to boths̄1 and s̄ in jointly.

The geometry is the same as in Fig. 3~a!. It will shorten
some formulas to define the total charge density

s̄ t[s̄11s̄ in . ~3.17!

The free energy density is the same as in Sec. III D, but
time we need a more general formulation than Eq.~3.16!,
since we are not simply evaluating at the optimal value
s̄ in . In fact, there are three physically separate cases
must distinguish.~i! The membrane plus its trapped interi
counterions may have greater charge density than the die
tric: s̄ t.us̄2u. ~ii ! The membrane plus its trapped counte
ons may have lower charge density than the dielectric,
still be positive: 0,s̄ t,us̄2u. ~iii ! The trapped counterion
may overwhelm and effectively reverse the charge of
membrane:s̄ t,0. This is the charge reversal we seek. In th
case the equilibrium distance between the membrane a
negative dielectric is infinity; the membrane actually rep
incoming negative objects.

The total free energy density in each of these cases~and
still in the linearized approximation! now reads

f ~ s̄1 ,s̄ t!5
smax

2

2ke

3F ~ s̄ t2s̄1!21H u~ s̄ t!
22~ s̄2!2u if s̄ t.0

~ s̄ t!
21~ s̄2!2 if s̄ t,0

J
1b„s̄1 ln s̄11~12s̄1!ln~12s̄1!…G

~ linearized approximation!. ~3.18!

The functionf defines a surface over the (s̄1 ,s̄ t) plane. If
this surface is everywhere convex-down then there is no
stability. If not, then it may be possible to bring a straig
line up to the surface from below, touching it at two points
tangency but lower than the surface at some po
(s̄1,av,s̄ t,av) lying between those tangency points. In th
case a homogeneous system with average compos
(s̄1,av,s̄ t,av) will be able to reduce its free energy by par
tioning into zones whose compositions are given by the t
points of tangency.

We will assume that initially, when the membrane vesic
was formed and no dielectric spheres were present, the
were in equilibrium across the membrane, so that half
them got trapped inside:s̄ t,av5

1
2 s̄1,av. We will also for il-

lustration generally take the membrane composition to
half charged and half neutral surfactants, so that the m
fraction s̄1,av5

1
2 . Finally, we assume the approaching d

electric to have greater charge density than the maxim
possible value for the membrane. For illustration we ta
s̄2523/2. Summarizing, we will consider the illustrativ
case
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2614 PRE 62YI CHEN AND PHILIP NELSON
s̄1,av5
1
2 , s̄ t,av5

1
2 s̄1,av,

s̄2523/2 ~ illustrative case!.

In general there may be many lines in the (s̄1 ,s̄ t) plane, all

passing through the point (s̄1,av, 1
2 s̄1,av) and all exhibiting

the instability. In this case we must examine all the lines a
choose the one that gives the absolute minimum in free
ergy. To do this systematically, we label the lines by the r
numberp and write each parametrically as

~ s̄1 ,s̄ t!5S s,
12p

2
s̄1,av1

p

2
sD , 0,s,1. ~3.19!

In principle one could now plotf from Eq. ~3.18! along
the family of lines defined by Eq.~3.19!, find the points of
tangency, optimize overp, and finally obtain the sought in
stability and the charge densitiess̄ t

(a) and s̄ t
(n) in the two

zones as points of tangency, as described in Sec. III C ab
If one of these~conventionallys̄ t

(n)) proves to be negative
then we conclude that the membrane exhibits a cha
reversal instability, as was to be shown. In fact, these s
are now rather easy to complete. But we have already
marked that the linearized theory is not accurate in the
gime of high charge densities of interest to us. Accordin
we will now improve our theory by solving the full nonlinea
Poisson-Boltzmann equation, and then carry out the s
just described.

IV. NONLINEAR POISSON-BOLTZMANN THEORY

A. Basic formulas

We introduce the useful new variable

z[ekz. ~4.1!

It will also be convenient to define another nondimensio
form of the charge density by

s̃[sk/2n̂e52s̄/b ~4.2!

and a nondimensional form of the free energy density by

f̄ 5
k

n̂kBT
f . ~4.3!

The general solution to the Poisson-Boltzmann equa
can be written in terms of elliptic functions~see, for ex-
ample,@20#!. Fortunately, however, we need only the zer
pressure solutions, corresponding to two walls that are
to adopt their equilibrium spacingl * , and these solutions
consist of elementary functions@21,6#

c̄6562 ln
z11

z21
. ~4.4!

At z→` we then havec̄6→64/z564e2kz, precisely the
weak-field solution we found in Sec. III A.

The Poisson-Boltzmann~PB! equation is second orde
and so its general solution has two integration constants.
have fixed one of these by restricting ourselves to the z
d
n-
l

e.

e-
ps
e-
-

y

ps

l

n

-
e

e
o-

pressure case. The other one enters Eq.~4.4! rather trivially,
due to the translation invariance of the PB equation: in E
~4.4! we are free to shiftz, or equivalently multiplyz by an
arbitrary constant, thus obtaining a one-parameter family
zero-pressure solutions. In practice we will use Eq.~4.4! in
the unshifted forms given above, but select the regionz1
,z,z2 to enforce Gauss’s law at each of the two charg
surfaces.

For example, for an isolated surface of charge den
s1.0 we choose the solutionc̄1 with one limit at infinity
and the other atz1 , which we choose by requiring

s1

e
52

kBT

e

d

dz
c̄1U

z1

or

z15
2

s̃1

~11A11s̃1
2 /4!. ~4.5!

The free energy formula analogous to Eq.~3.8! is then ob-
tained by substituting Eq.~4.4! into Eq. ~3.5!, to get

f̄ self5
28@22z1 ln~11z1!/~211z1!#

211z1
2

12s̃1 ln
z111

z121
~nonlinear theory!. ~4.6!

Two surfaces of the same sign charge will repel to infin
separation, so we use this formula for each one separa
For a negatively charged surface we simply replaces̃1 by
us̃2u in Eq. ~4.5!.

It is instructive to compare Eq.~4.6! to the corresponding
formula in the linearized approximation, formula~3.8! ~Fig.
4!. While the two formulas agree at low charge density,
linearized formula overestimates the free energy by alm
an order of magnitude at the high charge densities of inte
to us. The nonlinear PB equation also predicts a narro
cloud of counterions than the linearized approximation
any given charge density.

For two oppositely charged surfaces at their equilibriu
spacing we can generalize the argument given in Sec. I
above, again obtaining Eq.~3.10!. Again suppose first tha

FIG. 4. The self-energy density of a charged surfacef̄ self

5k f self /kBTn̂ as a function of the dimensionless charge densitys̃.
Top curve: Linearized approximation, Eq.~3.8!. Bottom curve:
Poisson-Boltzmann solution, Eq.~4.6!. f self is positive in our con-
vention; see Sec. III A.
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PRE 62 2615CHARGE-REVERSAL INSTABILITY IN MIXED . . .
s1,us2u, and soz1.z2 . By the same logic as in Sec
III B, the potentialc̄ in the gap is just the same as that of
isolated surface of charge densitys2 , but truncated at some
finite z1 .

Let us abbreviate the local integrand in Eq.~3.5! by F

5c̄ sinhc̄22 coshc̄12. This is the same for either of th
two solutionsc̄6 . We thus get

f̄ self~s6!56
ks6

2en̂
c̄1~z6!1E

z6

`

dzF

and

f̄ gap~s1 ,s2!5
k

2en̂
@s2c̄~z2!1s1c̄~z1!#1E

z2

z1

dzF.

But the last expression just equalsf̄ self(s2)2 f̄ self(s1). Re-
peating for the opposite cases1.us2u, we get the desired
combination formula~3.10!.

B. Thin, impermeable membrane

Proceeding now as in Sec. III E, we combine Eqs.~4.2!,
~4.3!, ~4.5!, ~4.6!, ~3.10!, ~3.12!, and ~3.14! to obtain the
analog of the linearized formula~3.18!: the nondimensiona
free energy density of the membrane1 dielectric system at
its equilibrium spacingl * , as a function of the local mem
brane charge densitys1 and the net charge densitys t of
counterions trapped inside the membrane vesicle, is now

f̄ ~ s̄1 ,s̄ t!5 f̄ self~ s̄ t2s̄1!

1H u f̄ self~ s̄ t!2 f̄ self~ s̄2!u if s̄ t.0

f̄ self~ s̄ t!1 f̄ self~ s̄2! if s̄ t,0
J

1
4

b
@s̄1 ln s̄11~12s̄1!ln~12s̄1!#.

~4.7!

Here s̄ t5s̄11s̄ in as before andf̄ self(s̄) is the function de-
fined by Eq.~4.5!, ~4.6! evaluated ats̃52s̄/b. Thus at low
charge densities the first two terms of Eq.~4.7! contain fac-
tors of 1/b2, and so dominate the last~mixing-entropy! term,
just as in Eq.~3.18!.

We can now carry out the program outlined in Sect. III
for the illustrative parameter valuesn̂51 mM, a0

50.5 nm2, b50.006,s̄2523/2, ands̄1,av51/2 discussed
earlier. Figure 5 shows the surface defined by Eq.~4.7!. For
clarity we have shown2 f̄ instead of f̄ , so that thermody-
namic stability would correspond to an inverted bowl sha
We have also tilted the graph by adding a convenient lin
function to 2 f̄ , to highlight the saddle shape. The line
function was selected by trial and error. Adding it does n
change the points of tangency between the surface an
straight line.

The graph clearly displays the instability we were se
ing. Moreover, one of the two hills on the surface clearly l
to the left of the line of charge reversal,$s̄ t50%. To make
.
r

t
a

-

this qualitative observation precise, we must now evalu
Eq. ~4.7! along the family of lines specified by Eq.~3.19!,
perform the Maxwell construction on each line, and choo
the value ofp whose tangent line has the lowest value off̄ at
the points̄1,av. Figure 6 shows the result of this analysis f
the illustrative valuesp52.4 and 3.8, and the optimal valu
p52.9.

The figure shows coexistence between a zone withs̄1
(a)

50.95 and another zone withs̄1
(n)50.25. The latter zone

thus presents total charge densitys̄ t520.11 to the outside
of the vesicle. Since this is negative, this zone is cha
reversed and deserves its name as a ‘‘nonadhesive’’ z
Indeed, the effect is large:s̄ t is 245% as great as the charg
s̄1,av/251/4 presented to the outside world when there
no adhering dielectrics spheres. Recalling thatgs̄1

(a)1(1

2g)s̄1
(n)5s̄1,av, we find that the adhesion zone covers 36

of the vesicle. These results were announced in@4#.

C. Finite thickness, bilayer membrane

While the above results are encouraging, and show
mathematical possibility of a charge-reversal instability, o
model needs considerable refinement before we can tak
results seriously. In this subsection we begin this task
acknowledging the bilayer character of the membrane and
finite capacitance, both neglected up to this point. The res
in this section were also announced in@4#.

Instead of idealizing the membrane as a thin sheet
charge densitys1 , we now regard it as two sheets of char
densityus1 and (12u)s1 representing the charged hea
groups of the inner and outer surfactant layers, respectiv

FIG. 5. Free energy densityf̄ (s̄1 ,s̄ t) for a thin, impermeable
membrane. For easier visualization we have inverted the fig

rescaled, and added a linear function, plotting2 f̄ (s̄1 ,s̄ t)/1000

1218.016.0s̄1211.4s̄ t instead off. The solid curve is the locus

of points wheres̄ t50; points to the left of this curve represen

charge-reversed states. The heavy dot is the point (s̄1,av,s̄ t,av)
5(1/2,1/4) representing the average membrane composition ch
for our illustrative calculation. The two hills in the graph imply, v
the Maxwell construction, that the system’s ground state consist
two coexisting zones. Since, furthermore, the hills straddle the s
curve, one of the zones is charge reversed.~Adapted by permission
from @4#. © 1999 American Association for the Advancement
Science.!
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2616 PRE 62YI CHEN AND PHILIP NELSON
@see Fig. 1~d!#. These two layers of charge are separated b
dielectric layer of thicknesst and dielectric constantem, cre-
ating a capacitor of capacitancec5em/t per area. We will
estimatec using the value 0.01 pF/mm2 typical for artificial
bilayer membranes@22# and make the useful abbreviation

t[tke/em5ke/c. ~4.8!

Then t'7 at salt concentrationn̂51 mM, or more gener-

ally t'7An̂/(mM).
The free energy formula~4.7! used in Sec. IV B needs

only two simple modifications.~1! Since the membrane sti
presents charge densitys12s t to the interior solution and
s t to the exterior~Fig. 1!, the terms involvingf̄ self are un-
changed. Now, however, whens in1us1 is nonzero @or
equivalently s t1(u21)s15” 0], there will be a nonzero
electric field in the membrane’s interior, with a capaciti
energy cost per area of@s t1(u21)s1#2/2c. ~2! The mem-
brane now consists oftwo fluid monolayers of mixed
charged and neutral surfactants. Each monolayer has a m
mal density1

2 f smax5e/a0, attained when the density of neu
trals is zero. Accordingly we replace the mixing entropyf m
from Eq. ~3.12! by

kBT

a0
S us1

smax/2
ln

us1

smax/2
1••• D .

Casting everything into the nondimensional forms defin
above, we see that we must add to the formula~4.7! for f̄ the
expression

FIG. 6. Three slices through Fig. 5 along lines passing thro

the average-composition point (s̄1 ,s̄ t)5(1/2,1/4). The total

charge density seen from outside the membrane is taken to bs̄ t

5@(12p)s̄1,av1ps̄1#/2 for various values ofp. Unlike Fig. 5 we
have not inverted this graph. Two illustrative slices~gray curves!
showp52.4 and 3.8. The black curve, withp52.9, gives the most

advantageous mixed state, since its tangent line intersectss̄1

5s̄1,av51/2 at the lowest value off̄ ; hencep* '2.9. The dashed

line shows coexistence between an adhesion zone withs̄1
(a)50.95,

covering a fractiong* 50.36 of the vesicle, and a nonadhesive zo

with s̄1
(n)50.25. The heavy dot shows the point of charge rever

wheres̄ t50. Since the points of tangency lie on opposite sides
this dot, the nonadhesive zone indeed presents net negative c
to the outside world. Again the curves have been tilted for view

by plotting f̄ /1000110.9s̄1215.2.
a

xi-

d

4t

b2 @s̄ t1~u21!s̄1#21
2

b
$2us̄1 ln~2us̄1!

1~122us̄1!ln~122us̄1!12~12u!s̄1

3 ln 2~12u!s̄11@122~12u!s̄1# ln@122~12u!s̄1#%.

~4.9!

To use our formulas we add Eq.~4.9! to Eq. ~4.7! and again
hold fixed the two conserved quantitiess̄1 and s̄ t . As be-
fore we must optimize over all other variables, in this ca
just u, before performing the Maxwell construction as in Se
IV B. We can simply optimize Eq.~4.9! overu, sinceu does
not enter Eq.~4.7!. However, this optimization is subject t
the four inequalities whichu must obey:

0,us̄1,1/2, 0,~12u!s̄1,1/2.

A graphical analysis similar to the one shown in Fig.
now gives ~Fig. 7! that the best line through (s̄1 ,s̄ t)
5(1/2,1/4) hasp'2 @see Eq.~3.19!#, with points of tan-
gency ats̄1

(a)50.247 ands̄1
(n)50.65. Proceeding as in Sec

IV B gives coverageg* 563% at equilibrium ands̄ t5
20.003, or about21.2% of the charge density presented
the outside world when no dielectric spheres are presen

We can readily understand the qualitative features
these results. Sincet is large, electric fields inside the mem
brane are energetically costly and the two sides of the m
brane are nearly independent. Thus the interior ion cha
densitys in remains nearly uniform, and hence nearly equ
to 2s1,av/2, and similarly the inner monolayer charge de
sity us1's1,av/2. Then the total charge densitys̄ t'(1
2u)s̄1'@(12u)/2u#s̄1,av @see Fig. 1~d!#, and Eq.~3.19!
requires that eitheru51/2 or p'2. The solutionu51/2 is
unphysical; the solutionp'2 is just what we found numeri
cally. To reverse its charge, the membrane must allow e
tric fields in its interior@see Fig. 1~d!#; the high cost of doing
this accounts for the very sharp left hand dip in Fig. 7 co

h

l,

f
rge

g

FIG. 7. Free energy density along the optimal linep'2 for a
finite-thickness, bilayer membrane. The long tick on the absciss

at s̄1,av, the illustrative value for average bilayer concentrati

studied in the text. The point of charge reversal iss̄150.25, which
is the second point from the left where the graph intercepts
abscissa. Since the tangent point is slightly to the left of this

s̄1
(n)50.247, we again find a slight charge reversal. Again the gr

has been scaled and shifted to bring out its structure: we have

ted the quantityf̄ 212 75015615s̄1 .
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PRE 62 2617CHARGE-REVERSAL INSTABILITY IN MIXED . . .
pared to Fig. 6, and for the greatly reduced degree of cha
reversal in the finite-thickness case. The charge-reversa
fect diminishes for larger values oft, as we predicted in Sec
II. According to Eq.~4.8! this means the effect will disappea
either for thick membranes or at large enough ion strengtn̂.
Numerically we find the critical value to be about 20 mM
roughly as seen in the experiments of@4,5#.

Though the charge-reversal effect seems small, it
enough to cause the rejection of additional negative die
tric spheres. To estimate the magnitude of this effect, c
sider what is needed to increaseg from its equilibrium value
g* to g* 1d. To do this we must choose new values
s̄1

(a)1e (a) and s̄1
(n)1e (n), subject to the condition~3.13!,

which now reads

~g* 1d!~s̄1
(a)1e (a)!1~12g* 2d!~s̄1

(n)1e (n)!5s̄1,av.

We then minimize the total free energyF over e (a) ande (n)

subject to this constraint, finding that the increase inF when
we force a nonequilibrium value ofg is

DF5
kBTn̂

k

1

2
~ s̄1

(a)2s̄1
(n)!2S 12g*

f̄ (n)9
1

g*
f̄ (a)9

D 21

Ad2.

In this expressionf̄ (a)9 denotesd2 f̄ /ds̄1
2 u s̄

1
(a), etc., andA is

the total membrane area. Bringing an additional 1mm2 of
negative dielectric into contact with a vesicle of ar
4p(10 mm)2 gives d50.000 83. Evaluating numericall
then givesDF'3000kBT, a huge barrier to adhesion, an
similarly if we pull away 1 mm2 of adhering dielectric.

V. EFFECTS OF ION CORRELATIONS

The charge density near a highly charged surface can
come so great as to invalidate the mean-field theory we h
used so far. The resulting changes in the force between
plates have been the object of intense study since the dis
ery that the total force can become attractive for twolike-
charged plates, in the presence of multivalent counteri
@23,24#. The situation we will need to study will be muc
simpler than that one, for two reasons. First, we are in
ested only in the free energy density atzeroforce ~i.e., equi-
librium!. Secondly, our effect has arisen already at the le
of mean-field theory. Since we consider the case ofmonova-
lent counterions only, i.e., in the regimes of small to mod
ate ion interactions, correlation effects will turn out to be
modest correction to the main, mean-field, contributio
Thus we are in the regime opposite to that recently studie
Refs.@25,26#.

The criterion for mean-field theory to be valid is rough
that the electrostatic potential energy of two ions at the m
ionic separation be smaller than the thermal ener
e2n6

1/3/4pe,kBT, or equivalently thatn6l B
3,1. Any iso-

lated surface, no matter how highly charged, will have
distance beyond which this criterion is satisfied, and so
universal Poisson-Boltzmann solution~4.4! will be valid
there. We will call the boundary of this regionz5zs . We
find zs using Eqs.~4.4! and~3.4!, obtainingzs50.28 nm for
our illustrative case of ambient salt concentrationn̂
51 mM.
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Thus any isolated planar surface has exactly the sa
potential@Eq. ~4.4!# as any other, forz.zs . The charge den-
sity s1 enters only via the locationz1 of the surface in the
coordinatez. Given a surface of charge densitys1 , we com-
pute z15k21 ln z1 , wherez1 is given by Eq.~4.5!. If z1

.zs50.28 nm, then mean-field theory is everywhere ac
rate and there is no correlated-ion cloud near the surface
the opposite case, that part of the ion cloud lying within t
layer z1,z,zs will have non-negligible correlations. Sinc
z1 is always positive, this layer is never any thicker than
typical ion radius, and so may be treated as a tw
dimensional classical charged gas@27#. This approach may
be regarded as an approximation to other, more refined,
culations~e.g., Refs.@28,29#!.

The effect of correlations will be to reduce the free ener
density, as ions can avoid each other, reducing their elec
static self-energy. To apply the results of Totsuji, origina
derived for use in the study of electrons adsorbed onto liq
helium@27#, we need to know the two-dimensional densitym
of counterions in the correlated layer.m simply equalss1 /e
minus the total density in the uncorrelated regionz.zs .
Again using Eqs.~4.4! and~3.4! in the latter region, we find
m5(s1 /e)20.81 nm22. If this quantity is negative then
there simply is no correlated layer andm50. Defining the
plasma parameter asG5l BApm, the correlation energy
density can then be represented by the interpolation form
Ec5mkBTG@21.0711/(2.2G11.3)#, which is approxi-
mately valid over the range 0,G,5000 @27#. Figure 8
shows the resulting change in the free energy density,
tained from the thermodynamic formula f c(m)
5mkBT*0

G(dG/G)(Ec /mkBT) for the correlation contribu-
tion f c to the free energy density.

When two oppositely charged surfaces face each ot
we have seen how the minority surface will be stripped of
counterions; the majority surface may, however, have a c
related ion cloud, so we addf c(m) to its free energy density
Since in the situations of interest to us the majority surfac
always the dielectric sphere, and sincem depends only on the
surface’s charge~not on the presence of the other surfac!,
we find thatthe correlation correction to the free energy o
the negatively charged dielectric surface is a constant, and
may simply be dropped. We do need to include the corre
tion free energy of the membrane’s interior surface, but fo
finite-thickness membrane this too is nearly a constant, s

FIG. 8. Correction to the self-energy densityf̄ self from counter-
ion correlations. The upper curve is the Poisson-Boltzmann re
~lower curve of Fig. 4!; the lower curve includes the correctionf c

discussed in the text.
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as we have seen the inner monolayer’s charge densityus1

deviates only slightly froms1,av/2. Finally, in conditions of
charge reversal theouter monolayer becomes isolated an
can have an ion cloud of its own. Since as we have seen
degree of charge reversal is very small, the densitym of this
last ion cloud is very small and the correlation contribution
negligible.

We have just outlined qualitatively why counterion corr
lations may be expected to have little effect on the res
given in Sec. IV C. Indeed, the numerically calculated gra
analogous to Fig. 7 is not appreciably different from th
graph, and we do not display it here.

VI. DISCUSSION

We have proposed a theoretical explanation for the p
nomenon of electrostatic adhesion saturation observed
perimentally in@4,5#. While the experimental system has n
been systematically explored yet, our model reprodu
qualitatively the surprising phenomenon of charge reve
and several salient experimental facts@4,5#: ~1! Adhesion
saturation occurs only withmixedbilayer vesicles, that is, a
mole ratioss̄1,av not too close to zero or unity.~2! It occurs
only under conditions of sufficiently low salt.~3! The satu-
rated state has a very definite number of adhering obj
(g* is fixed for each vesicle!.

Our analysis has omitted many familiar colloidal-for
effects. Many of these are short-ranged~e.g., solvation
forces!, weak compared to electrostatic forces~e.g., undula-
tion repulsion!, or rapidly decreasing with distance~e.g., van
der Waals forces!. In addition we have neglected all finit
ion size effects. We believe that our conclusions will be
bust when such effects are introduced, in part because
crucial physics of charge reversal involves the immedi
neighborhood of the left hand dip in Fig. 7, namely, t
separation between the charge-reversal point and the
gency point. But the distancel * between the membrane an
dielectric diverges as we approach the charge-reversal p
from the right, so this physics is controlled by the lon
distance behavior of the forces. Certainly, the exact loca
of the tangent point depends on the right hand part of Fig
as well, where our theory is not reliable. But this depende
is small due to the sharpness of the left hand dip in the
energy density. Even if the right hand side of the graph d
fers from what we computed, there should be a range
membrane compositionss̄1,av greater thans̄1

(n) but low
enough to be in the left part of the graph, and hence yield
the sort of zone separation we have studied.

We have examined onlyequilibriumstates. It is quite pos
sible that the experimental system of@4,5# is not in equilib-
rium, i.e., that the observed coverageg is less than the equi
librium valueg* because the last one or two balls is initial
repelled by a finite free energy barrier. But our goal was
understand the surprising existence ofanybarrier, not to pre-
dict a specific value forg* , which in any case depends o
the membrane composition@30#.

Finally, we have neglected the interfaces between the
hesion and nonadhesion zones. These interfaces will b
microscopic~molecular, or nanometer! dimensions, since the
membrane is not near any critical demixing point. Thus th
main effect will be simply to contribute a line energy, lik
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any domain wall. Reference@5# applied this observation to
explain the saturation of ball adhesion, and why it occ
only for tense vesicles.

The analysis suggests a number of experimental test
our mechanism. A mixed vesicle adhering to a charged
electric surface@9# may provide a more controlled geomet
than that of@5#; in this case adhesion saturation suggests
possibility of observing an adhering, yet flaccid, vesicle.
more ambitious test could be arranged by washing out
exterior solution, replacing it by another of different io
strength but the same osmolarity, while pinning a sin
vesicle for observation with a micropipette. Our formul

generalize readily to the case where the ionic strengthn̂ is
different inside and outside the vesicle. In this way it may
possible to turn adhesion saturation on and off reversibly
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APPENDIX: NOTATION

Constants

We work in SI units. Thus the potential around a po
charge q in vacuum is c(r )5q/4pe0r , where e05
9310212 F/m. We treat water as a continuum dielectr
with e580e0; inside the membraneem'2e0. The Bjerrum
length in water isl B5e2/4pekBT; thus 4pl B58.7 nm.

Parameters

We take for illustration a typical ambient salt concentr
tion of n̂51 mM5631024 nm23. Then the inverse Debye

length is k5A2n̂e2/ekBT5An̂ (mM)/(9.8 nm). The salt
concentration inside the vesicle is the same, due to osm
clamping.

We suppose a mixture of surfactants, which for simplic
have equal area per headgroupa050.5 nm2. Then smax
52e/a0 is the maximum bilayer charge density and the p
rameter b52n̂a0 /k50.006 measures the relative impo
tance of mixing-entropy and electrostatic effects.

We use a typical artificial bilayer capacitance ofc
50.01 pF/mm2, which enters only in combination with th

membrane thicknesst viat5tke/em'7An̂ (mM).
For illustration we take the experimentally controllab

mole fraction of charged surfactants to bes̄1,av51/2 and
one-half of the corresponding counterions to be trapped
the vesicle interior, so thats̄ t,av5s̄1,av/251/4. We also take
the approaching charged dielectric objects to have cha
density 50% greater than the membrane, ors̄2523/2.
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Variables

We generally denote nondimensionalized quantities w

a bar or tilde: thuss̄[s/smax, while s̃5sk/2n̂e52s̄/b.
Also the free energy densityf gives rise to f̄ 5k f /n̂kBT

5 f /@63103kBT (mm2)#An̂ (mM), while the electrostatic
potentialc gives c̄5ec/kBT. Various contributions tof in-
clude the mixing entropy of membrane surfactantsf m and the
correlation contributionf c .
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The charge densitys of a surface determines its Gouy
Chapman lengthlGC52ekBT/es. Various charge densitie
in the text are defined in Fig. 1, for example,s t5s in
1s1 . m denotes the 2Dnumberdensity of ions in the dense
correlated cloud near a surface.m in turn determines the
plasma parameterG[l BApm.

Geometrical quantities include the gap widthl , the total
membrane areaA, the fractiong of A in the adhesion zone
and its equilibrium valueg* . The distancez from a surface
is sometimes expressed usingz5ekz.
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