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Charge-reversal instability in mixed bilayer vesicles
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Bilayer vesicles form readily from mixtures of charged and neutral surfactants. When such a mixed vesicle
binds an oppositely charged object, its membrane partially demixes: the adhesion zone recruits more charged
surfactants from the rest of the membrane. Given an unlimited supply of adhering objects one might expect the
vesicle to remain attractive until it was completely covered. Contrary to this expectation, we show that a
vesicle can instead exhikdidhesion saturatiorpartitioning spontaneously into an attractive zone with definite
area fraction, and a repulsive zone. The latter zone rejects additional incoming objects because counterions on
the interior of the vesicle migrate there, effectively reversing the membrane’s charge. The effect is strongest at
high surface charge densities, low ionic strength, and with thin, impermeable membranes. Adhesion saturation
in such a situation has recently been observed experimeftalAranda-Espinozat al, Science285, 394

(19991
PACS numbegps): 87.10+e, 87.16.Dg, 82.65.Dp, 82.70.Dd

[. INTRODUCTION then wander away from, the vesicle.
The theory of colloidal surface interactions is védfir

The self-assembly of colloidal particles offers an attrac-introductions, se¢6—8|). Our goal is to introduce a very
tive route to the synthesis of highly ordered, nanostructuregimple mechanism for adhesion saturation, summarized
materials. Typically these materials have been extremelgraphically in Fig. 1 below, and then present some calcula-
soft, being stabilized by entropic effects. For example, clastions to show how it works in the parameter regime relevant
sical colloidal crystals are three-dimensional arrays of mutulo experiments. We will argue that our effect should be
ally repelling sphere$1,2]. Entropic effects maintain their qualitatively unchanged after many other surface-interaction
crystalline order in spite of a density well below that of closeeffects are included in the analysis, but much work remains
packing. As a result, these arrays are easily disrupted b{P be done to show this in detail. Section Il sketches the
small mechanical shear, dilution, etc. More recently, deplePhysics of our mechanism. Section IIl begins the analysis
tion forces have been harnessed to assemble spheres iM8iNg linearized Poisson-Boltzmann theory, considering in
crystalline arrays on the walls of their contaif&i. Again ~ turn a series of more complicated situations. The linearized
the physical forces between the spheres are repulsive, at@eory is familiar and helps to connect the analysis to the
again the resulting arrays are extremely soft. physical picture, but it proves to be inadequate for the inter-

Attempts to create strong ordered materials from physiesting range of parameter values. Thus in Sec. IV we up-
cally attracting components have generally produced insteadrade to the full nonlinear theory, which proves to be quite
h|gh|y disordered aggregates. Recen“y' however, Ramos arffsy in this context. Fina”y, we consider the effects of ion
co-workers reported the observation of robust two-correlations, neglected in Poisson-Boltzmann theory, in Sec.
dimensional (2D) crystallites formed from negatively- V. A glossary of symbols appears in the Appendix.
charged latex spheres introduced into a suspension of bilayer
vesicles[4,5]. The membranes forming the vesicles consist
of a mixture of positively charged and neutral surfactants.
The immense electrostatic attraction between the negative We first briefly review the physical picture developed in
spheres and positive membranes led to the crystallites’ gredf] and summarized in Fig. 1. Consider first two dielectric
strength; their ordered 2D character arose via the intermedsurfaces bearing fixed charge densites of the same mag-
ary role of the vesicles agemplatesfor the initial self- nitude but opposite sign in an electrolyte solution. When
assembly of the spheres. they are separated by several screening lengths they “feel”

In this paper we develop some of the physics of the crulittle mutual attraction, since each maintains a neutralizing
cial intermediate step just mentioned, elaborating and exeloud of counterions. As the surfaces approach closer, even-
tending the discussion if¢d]. This stage begins when the tually their screening clouds begin to interpenetrate. Then
latex spheres are first introduced to the vesicle suspensionggative counterions from the positive surface, and positive
and lasts for hours to days. Initially the spheres adsorb avidlgounterions from the negative surface, can escape to infinity
onto the vesicles, and indeed many vesicles become comwvithout violating overall charge neutrality. The correspond-
pletely covered with spheres. However, a significant subing gain in entropy reduces the system’s free energy: coun-
population of vesicles content themselves with only partialterion release drives the surfaces into contact.
coverage: on these vesicles the adsorbed spheres feelft a Next consider the case of two surfaces of opposite sign
limiting “raft.” Once the raft forms, no further spheres at-and unequal magnitude; for instance, suppose that
tach to the vesicle anywhere, though they are present in ex<|o_|. In this case counterion release will be incomplete;
cess. Instead, particles in suspension are seen to approaelfiter exhausting all the negative counterions, some positive
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a b ""Zone "a"Zome may still be less than that of the approaching dielectric, and
O G —— so the final contact may still be imperfect, as shown in Fig.
%%M“" 1(c). We will assume this to be the case in the rest of this
o | | 729050 | paper. - ,
0+ 0+04 040 o, Nevertheless, a further reduction in free energy density
o b6 4 o from Fig. 1(c) is still possible, once we remember that the
< Area (14~ «Area v~ inner membrane monolayer and its counterions need not play
a passive role. Figure(d) shows how the remaining trapped
cw___ d counterions in panegk) can leave the gap, even if the mem-
§§“’9' g_)' brane is impermeable, by following the dashed horizontal
6 ) 333:-44“-/-3 . e arrows in panel(c). After_ this rearrangement some of the
00000 00000 ViV awo, charge on the negative dielectric is neutralized by surfactants
Qj‘%"ﬁ"—'l' %@y—"é” 0 . };‘: }o. on the inner monolayer, whose own interior counterions mi-
wmnerees ) grate to the nonadhesion regift0]. Panel(c) also shows a

rearrangement of the surfactants onitiveer monolayer, fur-

FIG. 1. (a) Cartoon of the situation. A large vesicle of mixed ther depleting the charge of the noncontact zone.
neutral and positively charged surfactants attracts a limited number Figure Xd) raises an intriguing question: will the migra-
of negatively charged spheres, then saturates. The Debye screeniign Of interior counterions ever overwhelm and effectively
length, typically about 10 nm, is much smaller than the sizes of thé€Vverse the charge of the membrane as seen from outside, as
objects.(b) Disposition of counterions when an approaching negaShOWﬂ in the figure? Of course, cartoons alone will not settle
tive object(shaded, above righis still far from the vesicle. The this question, but we can argue physically that such an effect
vesicle interior is at the bottom of the figure. The zeros denotemay well happen as follows. First we note that the positive
neutral surfactants, plus signs the charged surfactants. Circled charge density of the noncontact zone™is already very
signs denote counterions in solution. The solid vertical lines joiningsmall in Fig. Xc), since the interior monolayer and its coun-
charges are fictitious elastic tethers representing intuitively the eleaerion cloud cancel, and as we will see below the electro-
tric field lines; the requirement of charge neutrality translates visustatic interaction driving the depletion of charged surfactants
ally into the requirement that all charges be tied in this way.  from the outer monolayer is very strong. Thus only a small
Redistribution of charges when the negative dielectric object apmigration of interior counterions will suffice to get charge
proaches the membrane, if we artificially forbid any electric field ra\/ersal. Second, the entrogiostof creating a nonuniform
inside the membrane. Four pairs of counterions have been releasgflarge density in the interior counterion cloud is quadratic in
to infinity (upper lefj. The interior monolayer, and its counterion the amount of charge that migrates, since the uniform distri-
cloud, are unchanged froifb). Zone “n” presents a net of one  p yiqn js an equilibrium state. But the free energin from
posmve' charge to the yesmle_ exterior and so remains attractive tﬂ’]is redistribution is linear in the amount of charge migra-
further incoming negative object&) The resulting state after we tion, being dominated by the derivatidédo , of the attrac-

relax the constraint of zero electric field inside the membrane, al-. e seli-energy[see formula(3.9 below]. Thus a finite
lowing the ion migrations indicated by the horizontal dashed arrowé'v gyLse mufats.) W. us a finl
mount of counterion migration will occur, and this amount

in (c). One additional counterion pair has been released to infinity’i .
and the adhesion gap has narrowed. The net charge of the bilayg?ay well exceed the small net charge on the nonadhesion

plus interior counterions in zonert” has reversed sign relative to '€gion, effectively reversing it. o
(c), and so this zone repels additional incoming negative objects. |he rest of this paper is devoted to a quantitative justifi-

(Adapted with permission frorf4]. © 1999 American Association ~cation of the intuitive argument just given. Before passing on
for the Advancement of Scienge. to the analysis, we should remark on another feature of Fig.

1(d). Charge reversal requires that electric figldgpresented

ones will remain, trapped by the requirement of charge neu§chematica|ly by the vertical lines in the figupenetrate the

trality. The osmotic pressure of the trapped ions will preveninterior of the membrane. Since the membrane interior is a
the surfaces from coming into perfect contact. If one surfacd2W dielectric constant medium, the energetic cost of these
hasvariable charge density, say ., , then additional surface lelds can be S|gn|f|.cant,. another term guadratic in the
charges will be pulled into the contact region in order tp@mount of (_:harge_ migration from .panéd) to_(d). If the
improve the contact with the approaching negative surfacd€mbrane is sufficiently thick, this cost will reduce the
[9]. A surface charge density can, for instance, vary becaus@arg_e migration belo_w the point 9f chgrge reversal, a point
the compositionof the surface is variable: for instance, the we will need to examine quantitatively in Sec. IV C below.
surface may be a mixture of charged and neutral surfactants,
as in the experiments ¢4,5]. In this case the recruitment of
charge to the contact region will deplete the other regions, in
turn rendering them less attractive to additional negative di- In this section we begin the mathematical implementation
electric objects. Figure(&) depicts this situation: surfactant of the ideas in Sec. II. We begin with the linearizgkbye-
rearrangement in the outer monolayer of the membrane hastickel) limit of low charge density, even though ultimately
permitted the release of two more ion pairs than would othwe will argue that the experiments studied here require a full
erwise[panel(b)] have been possible. nonlinear treatment. We do this partly because of the sim-
The rearrangement of membrane charges is limited: thelicity of the formulas, and partly to make contact with ear-
relative concentration of charged surfactants cannot excedikr work.
unity. The maximum charge density on the outer monolayer To fix notation and keep the article self-contained we be-

IIl. LINEARIZED MEAN-FIELD THEORY
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gin by rederiving some key results frofit1,12,9. The Ap-
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The last term of Eq(3.5) is a constant, which we have added

pendix summarizes our units and all symbols used throughby hand to cancel a term proportional to the volume of the

out the paper.

A. Basic formulas

world.

Equation(3.5) simplifies if the dimensionless potentiaTI
is everywhere much less than 1; in this case we simply get

_ 1 - . . . .
The electrostatic potential energy of a distribution of freeF =KkeT/drzns. Since the fixed charge is confined to a

charges of density(r) is 3/drp(r)y(r), where ¢ is the
electric potential 13]. The potential created by a single point
chargeq in an infinite, uniform, dielectric medium ig(r)
=q/4mel|r|. In a more complicated situatiogy(r) is related
to p(r') by some Green functio®G(r,r’) and obeys Pois-
son’s equationy2y=—ple.

We first imagine a uniform charge distribution of density

o on the surfacdz=0} [14]. The half space<0 is filled

with a dielectric with no free charges, and so the electric field
must everywhere vanish here. The other half space is a uni-
valent salt solution in equilibrium with a reservoir at concen-

plane, the free energy is a purely surface term o#iceas
been found.

To find ¢, we note that it satisfies the Poisson equation, a
property of the Green function used to define it. Using the
charge densityen. (r) found above in Eq(3.4) gives the
Poisson-Boltzmann equation,

V2 2e’n
lp_ EkBT

sinhy. (3.6)

tration n. The reservoir must remain neutral, but it can sup-Linearizing then gives the familiar Debye-ekel equation:
ply ion pairs at a cost in free energy given by a chemicaly2y,— 2y, wherex=/2e?n/ekgT.

potentialukgT. The total free energy of the mobile ions near

the surface is therr =F¢,+ Fes, Where the entropic and
electrostatic energies in mean-field approximation[&ite

Fene= kBTf drin.(Inn,vg—1)+n_(Inn_vg—1)

—p(netno)+En.—n_+ng], 3.9

Fes:%f drdr’ ene(r)G(r.r')enq(r’). 3.2

In the above formulags).. are the number densities of ions,
while ny(r)=p/e=n, —n_+n; is the total signed density,
including fixed surface charges with signed density We
introduced a Lagrange multiplief to enforce overall neu-
trality. The symbolb o is a microscopic volume factor which
will drop out of all physical results. We have fixed the arbi-
trary constant inF.¢ by setting the electrostatic energy to

The objects we want to consider are much bigger than the
screening length = 1/« [see Fig. 1@)]. Thus our geometry
is essentially planar, and we need the planar solutifiz
=Be""? to the Debye-Huckel equation. The electric field is
then E= -V, which indeed decays exponentially on the
length scale\p .

For a single wall we must choose the decaying solution to
Eq. (3.6). We fix the constanB by imposing Gauss'’s law at
the surfaceE= — (9l dz)z= (ol €)z. ThenB=celkekgT,
the solution is

oe
kekgT

KZ

Wz)= e

(linearized approximation

(3.7)

and the free energy per unit area of the isolated, charged
surface is

zero when the mobile counterions form a sheet coinciding

with the fixed surface charge. Thiggis the work needed to

pull this sheet away from the surface, and so is a positive

guantity.
In equilibrium we havedF/én..(r)=0. Away from the
plane this fixes

n.(Nug=eu ¥ +8 750, (3.3
HereE= eylkgT and we have fixed the additive constant in
by choosingy(=)=0. Sincen, =n_=n at infinity, we
geté=0 andu=In ﬁvo, or
n.(r)=ne ¥, (3.4
Substituting then gives the free energy
F= kBTF\J’ dr[ ¢ sinhy— 2 coshyr+ L (ne/n) i+ 2].
(3.5

fse=F/(area=kgToB/2e

=o0?2ke (linearized approximation (3.9

Another well-known solution to Eq(3.6) arises in the

opposite case of very high charge density, WhE}:el at the
surface. In this case the Poisson-Boltzmann equation has a
solution of “Gouy-Chapman” form:  ¢(2)=
In{(2eks T/€?n)[1/(z+ N g0)?]}. Here the free parameter is
the offset Agc, chosen to enforce Gauss's lavkgc
=2ekgT/eo. More highly charged surfaces thus have
smaller \gc and so a more nearly singular potential. The

pathological b_ehavior OE at largez simply reflects the end

of the regimey>1 at large enough. Note that the electric
field E,=2kgT/e(z+ \gc) of the Gouy-Chapman solution is

independent of the ambient salt concentratigras it should

be: the electric forces near a highly charged surface depend
only on the surface charge. The salt concentration determines
only the extent of the region in which the strong-field ap-
proximation is valid.
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B. Two dielectrics a

fgay
We minimized the free energy of an isolated surface, ob- e

taining Eq.(3.8). To extract any useful work from this stored
free energy, we would have to remove some constraint. One
way to do this is to bring in another semi-infinite planar '

dielectric[15] bearing opposite surface charge, thus chang- S
ing the solution region from a half space to a planar slab of |+~ —
thicknessl. Let us suppose that a surface with >0 ap- Omax [0] O, o.® 6 Omex O

proaches another surface with <0. , FIG. 2. (a) Sketch of the electrostatic part of the free energy
Parsegian and Gingell studied this situation in the Ilnear[fgap' formula (3.10], for a thick, mixed membrane approaching a

ized approximatior{11], arguing as in Sec. Il that the Sur- giejectric. We show the case wheke_|> . (b) Sketch of the
faces attract via counterion release until all of one species Qg free energy fgayt fm, including formula(3.12], illustrating
counterions in the gagthe “minority” specieg has been  the Maxwell construction. The features of the curve have been ex-
exhausted. I, #|o_|, a residual cloud of the othéfma-  aggerated for clarity. The membrane will partition into a highly
jority” ) species remains in the gap and the system equiliattractive region with charge density® and a somewhat attractive
brates at a finite gap spacihg. Nevertheless, the final state region witho{" .
has less free energy per unit area than it did originally; the
difference is theadhesion strength W W=fee o)+ e 0-)—Fgaf s ,0o)

We could computdV by again solving a boundary-value
problem as in Sec. Il A, but there is a shortcut. Suppose that =min{(a.)?,(c_)*}/ex  (linearized approximation
o, <|o_|, so that the+ counterions are the “majority” (3.11)
species. In mechanical equilibrium the hydrostatic pressure
pushing the walls together vanishes. The planar PoissorNote that W is completely independent of the majority
Boltzmann equation is a second-order ordinary differentiatharge density, a property noted by Naedial. In light of
equation, and so its solutions form a two-parameter familythe physical picture in Sec. II, we can readily interpret that
One integration constant is fixed by the Gauss law boundarjact: The total counterion release is limited by #reallerof
condition on the negative wall, while in equilibrium the other the two counterion populations.
is fixed By the condition of vanishing pressure. Hence the SinceW is always positive we find, as expected, tbat
solution(z) is exactly the same for two walls as it is for the positely charged dielectrics always attracvia the
isolated negative wall; the only difference is that in thecounterion-release mechani$fri]. Of course, this is not the
former case we truncate the solutionzatl, , while in the  behavior we were seeking to explaisee Sec.)l We must
latter casez extends to infinity. The equilibrium gap spacing now proceed to generalize the above arguments, incorporat-
|, is then just the value of at which Gauss's law for the ing the relevant differences between the above system and
positive wall is satisfied:—(—dy/dz)=0o,/e. Then Eg. the one studied in the experiments[6].
(3.7) gives the equilibrium spacing, by e“'«=|o_/o .| in
the linearized approximation. Note that indeed the right side C. Thick membrane

of this formula is positive and greater than unity, as it must . . . .
be sincel. =0 P g y We just found that two oppositely charged dielectrics at-
+=0. ) > 2
We now recall that the linearized approximation retainst'act: s expe_cted. But the experiments we are studymg_ in-
only the boundary term of Eq3.5), so volve dielectric(lateX) spheres interacting not with other di-

electrics, but with a bilayemembraneln this subsection we

kT _ _ begin to incorporate the new physics associated with this
fgad o+ ’U‘):2_e[0_¢(0)+0+ (1)1 situation. We first study the interaction of a dielectric of
fixed charge density_ <0 with a positively charged, very
1 ) 5 thick membrane, recapitulating some results of Natdal.
= 5el(0-)"= (o). 3.9 9]

The new physical feature of this situation is that the bi-
Repeating these steps for the opposite case where layer membranes in the experiments ded mixturesof

>|o_|, we find that in generdIFig. 2a)] positively charged and neutral surfactants. This means that
the charge density-, on the membrane is not a fixed num-
foad 04+, 0 )=|fse(04) —Fsel0)]. (3.10  ber, but may vary subject to,>0 and the overall con-
straint that the total membrane charf@Ac ., is fixed. Let
Remarkably, the simple combination formu(8.10 will o, 4 denote the average charge density, so that the total

continue to hold in the full nonlinear Poisson-Boltzmannmembrane charge 8o, ,,. In addition, we will suppose
treatment of Sec. IV A beloWl16]. Formula(3.10 is cer- that the charge density cannot exceed a maximunrf;
tainly reasonable: whew,=|o_| all counterions get re- =2e/a, determined by the area per headgraayp of the
leased, the two surfaces coincide, and this was our referenabdarged surfactants in each of the two monolayers constitut-
state of zero energy. Also, when we reverse the signs of alhg the membrane, and thit_|> o pay.
the charges the free energy should not change(E#0 has Throughout this paper we will adopt a highly simplified,
this property. generic picture of membrane compositional changes, retain-
Finally we find the adhesion ener§y as[9] ing only the entropy of mixing of the two surfactant types.
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Thus we neglect other entropic or enthalpic packing effects a b

in the assumed membrane free enefgy Moreover, at first £(G+.0)

we will for simplicity neglect the bilayer structure of the - T S B =

membrane; later on we will use formulas appropriate to a e’ez & oo @

bilayer. With these simplifications,, takes the form | o Iz \/
0+0+++0 O,

fmzikBT g+ In I+ + © interior }Gin [o]-0.  Ow
ao

g g
mex max FIG. 3. (a) Schematic for the approach of a dielectric to a thin,

1- U+K)In( 1- U;) :
Oma Om
(3.12
permeable membrane. Negative valuexz af the text refer to the
As discussed in Sec. II, we wish to explore the possibilityinterior of the vesicle(b) Sketch of the free energy densityas a
of a spontaneous partition of the membrane into two unifornfunction of o, , holding o, fixed.
regions, which we will call zonea and n. (Ultimately we
hope to find tha is adhering whilen is nonadhering, but for  concentratiom very small. Substituting some typical values
the moment these are arbitrary namé&$e areas of the two for the charge per headgroag=0.5 nnf and salt concen-
zones are not known in advance, but they must add up to th@ationn=1 mM=0.0006 nm 3 gives 8=0.006, well into
total areah, so we take them to beA and (1—- y)A, respec-  ihe regime of instability.
tively. ) Though we have found an instability, two remarks limit
The two zones exchange one conserved quantity, namelys interest. First, we have insisted that @ . < oy, SO of
membrane charggl?7]. Thus the system can divide into ., se the charge densitie$? and o™ on our two zones

it (3) (n) i o . . .
zones of charge density,” ando.”, subject to are both positive: both zones are adhesive, unlike the experi-
(@ (M) mental phenomenon we are trying to explain. Moreover, we
Yot (1= o =0 (313 found no instability at all unless the charge density,, is
This separation will be energetically advantageous if the corduite large (recall also that|o_| is assumed to be even

responding total free ener fFle@YV+ (1= NF(e™My)js  9dreater than this But at such large charges our linearized
Iessp thanAgf(cu ). Here t%);rée +er2erg(]y dgr)13i(fy;+))) . approximation breaks down. Our calculation becomes incon-
,av/ -

computed for auniform zone with fixed membrane charge sistent just as it.gets _intere'sFing. Much of this paper is dedi-
densityo, , minimizing over all other variables. cated to correcting this d_ef|C|er_10y. V\/_e ask the reader to sus-
The instability just described will not occur f{ o) is a p_end disbelief mqmentanly_ while we '”?p'eme”t the physical
convex function, i.e.gf/do, 2>0. If d?f/de, 2 is negative ~ P'ctUr® sketched in Sec. Il in the linearized theory, where the
anywhere within the allowed region<0c, < oray, We ap- formulas are .;lr?ple. Our clalmh_|s that the physical pr)]lcture. |sI
ply the Maxwell construction from thermodynamics to the ;ObUSt arll(_j Od.ﬁ beyondh_t ISI !nagequate mat hematllca
graph off. This involves drawing a straight line tangent to ramework; we will support this claim by improving the cal-
the graph and spanning the region of concavity. Let the tWOcuIanon in Secs. IV and V.
points of tangency be located@t® ando(" . If the average
membrane composition . ,, lies between these two values,
then the uniform system will be unstable to partitioning into  The previous subsection found that a highly charged,
two zones with compositions® and (" . thick membrane can partition into a zone of strong adhesion
In the case of a thick membrane, we havef{o.) and a second zone of weaker adhesion. In this subsection we
+f (o). Consulting Eqs(3.10, (3.8), and(3.12, we find  Will introduce another element of realism by accounting for
that the first(electrostatit term is destabilizing, while the the interior charges in the vesicle. To highlight the key role
secondentropid term is stabilizing. For future use we intro- Of the membrane as a barrier to counterions, we will first
duce two convenient abbreviations, one parametrizing th&tudy the simpler case of a thin membraieemeableo ions,
relative strengths of the two terms, the other a dimensionlesénding uniform attraction. This sets the stage for the more

D. Thin, permeable membrane

measure of charge density: interesting case of an impermeable membrane in Sec. IIlE
below.
B=2nay/k=rkayldw/ g, o=0lomy. (3.14 Thus the new feature introduced in this subsection is that
a membrane separates the world into two compartments,
With these abbreviations we obtain with electrolyte solution on each sid€&ig. 3a)]. We con-
5 tinue to neglect the internal structure of the membrane, treat-
Omax,, — o ~— .2 ing it as a single thin sheet of charge; in Sec. IV C below we
f= S er [[(o-)2=(0o1)7] will improve the analysis to include the bilayer structure and
L o o finite internal capacitance of real membranes.
+B(o Inc,+(1-0)In(l-0,))] To organize the calculation we first note that once again

there is only one independent conserved quantity exchanged
(linearized approximation laterally between zones on the membrane, namely, Let

Nardi et al. pointed out that this function has an inflection 0

point, giving a region of instability{Fig. 2b)], when B8 Tin= fﬁmdze(m(z)—n,(z)) (3.19
<1/2. According to Eq.(3.14), this means that either the

maximum charge density/a, must be large, or else the salt be the areal density of mobile interior counterions. Note that
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unlike o, , which must be positive and less thag,,,, the ~ For an impermeable membrane we must instead apply the
interior densityo;, can in principle have any sign and mag- Maxwell construction to botlr, and oy, jointly.

nitude. We will holda;, fixed while optimizing over the gap The geometry is the same as in Figa)3 It will shorten
spacing/ as in Sec. Il B above. Since in this subsection wesome formulas to define the total charge density

are assuming a permeable membrane, we then minimize over

i, as well to obtainf (o). We will suppress explicit men- =0+ 0. (3.17
tion of the dependence on the dielectric chasge, because
o is fixed. The free energy density is the same as in Sec. Il D, but this

The free energy densitlycan be regarded as an interior time we need a more general formulation than E3j16),

term from Eq.(3.8), plus a gap ternfg,, from Eq.(3.10,  since we are not simply evaluating at the optimal value of
plus the membrane free energy from Eq. (3.12. The in- oip. In fact, there are three physically separate cases we

terior term isf o — o) = (07n) ?/2ex. The gap “sees” op- m o . OORS

: o ust distinguish(i) The membrane plus its trapped interior
ppsmgfcha_r?ezdfnsmis Of‘zf;gd - +d0int)h, S0 qul(%?o) counterions may have greater charge density than the dielec-
gives foap= o= = (o + o) |/2€x an e equibnum e o>|o_|. (i) The membrane plus its trapped counteri-

spacing is/, (oin,04) = (k) In|o_|/(o, +aipn). ; . .
The membrane free enerdy, is independent of,, so ons may have lower charge density than the dielectric, but

minimizing over o, gives oy, =|o_|—o,, a positive Still be positive: 0<o<|o_|. (iii) The trapped counterions
value corresponding te’, =0: the membrane comes into Ma&y overwhelm and effectively reverse the charge of the
tight contact with the dielectrifFig. 3(b)]. Evaluating the ~membraneo;<0. This is the charge reversal we seek. In this
free energy at this point gives case the equilibrium distance between the membrane and a
negative dielectric is infinity; the membrane actually repels
oo 2 incoming negative objects.
fo,)= The total free energy density in each of these c#ard
2ek still in the linearized approximatiomow reads

X[(|o-|=0:)?

_ _ _ — — — O'max
+B(.Ino,+(1-0)In(l-0,))]. 319 flor,0)=5—
Computing the second derivative we see that this time every (_ T2 I(EI)Z—(;_)2| if ;t>0
i . i i ili X| (o—0 — _ _
term of f is separately convex: there is no instability. Our t— O+ (00?4 (0 )? if o0

result is physically reasonable. As the positive membrane
approaches the dielectric, the latter's negatimeinority)
counterions and some of the positifrajority) counterions +B(o.Ino,+(1-o,)In(l—0,))
get released to the exterior. Since we have assumed the
membrane is permeable, the remaining positive counterions
pass through it, where many more pair up with interior nega-
tive ions from the membrane and get released to the interior.
Since no counterions need to remain in the gap, we get tight
contact between membrane and dielectric, which in effectne functionf defines a surface over the (o) plane. If
become a single object of reduced charge density s surface is everywhere convex-down then there is no in-
—|o_|. The electrostatic self-energy of this composite objeckiapility. I not, then it may be possible to bring a straight
is a convex function, entropy never favors phase separatiofe up to the surface from below, touching it at two points of

(linearized approximation (3.18

and so there is no instability. tangency but lower than the surface at some point
(04 av,0ray) lying between those tangency points. In this
E. Thin, impermeable membrane case a homogeneous system with average composition

Previous subsections have shown that charge mobilit{7+,av.Tta) Will be able to reduce its free energy by parti-
alone can lead to an instability, but not to charge reversalioning into zones whose compositions are given by the two
(Sec. Il 0, and that introducing a coupled interior compart- Points of tangency.
ment alone does not even lead to instab"‘iSec_ 11 D) We will assume that |n|t|a”y, when the membrane vesicle
Surprisingly, in this section and Sec. IVB below, we will Was formed and no dielectric spheres were present, the ions
find that combining these two unpromising ingredients withwere in equilibrium across the membrane, so that half of
the hypothesis of a membrane impermeable to iaslead  them got trapped insidet, 5= 30 4. We will also for il-
to a charge-reversing instabilift8]. The key observation is lustration generally take the membrane composition to be
that an impermeable membrane Inas conserved quantities half charged and half neutral surfactants, so that the mole
independently exchanged between zones: the membrafigction o, ,,=3%. Finally, we assume the approaching di-
chargeo . and the interior counterion charge density, electric to have greater charge density than the maximum
[19]. In the previous subsectian,, could relax within a zone Possible value for the membrane. For illustration we take
by passing through the membrane, and so we simply optie_ = —3/2. Summarizing, we will consider the illustrative
mized f over it before applying the Maxwell construction. case
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P S b 7
+,av 21 tav 2Y + avs 25000
o_=-3/2 (illustrative casg. 20000
. . — , 15000
In general there may be many lines in the,(,o;) plane, all
. . T — s 10000
passing through the point{(;, 4,30 ) and all exhibiting
the instability. In this case we must examine all the lines and 5000
choose the one that gives the absolute minimum in free en- 5
50 100 150 200

ergy. To do this systematically, we label the lines by the real

numberp and write each parametrically as FIG. 4. The self-energy density of a charged surfdgg

= kfer/kgTh as a function of the dimensionless charge density
Top curve: Linearized approximation, E¢3.8). Bottom curve:
Poisson-Boltzmann solution, E(4.6). . is positive in our con-
vention; see Sec. Il A.

1-p—

0'+,av+

5 0<s<1. (3.19

— — p
(0-+ yo-t): Sa ES y
In principle one could now plot from Eq. (3.18 along
the family of lines defined by Eq3.19), find the points of
tangency, optimize ovep, and finally obtain the sought in-

stability and the charge densitie§® and o{" in the two

zones as points of tangency, as described in Sec. 111 C abov rbitrary constant, thus obtaining a one-parameter family of
If one of these(conventionallya{™) proves to be negative, zero-pressure solutions. In practice we will use Eg4) in
then we conclude that the membrane exhibits a chargehe unshifted forms given above, but select the regign
reversal instability, as was to be shown. In fact, these steps ;< /, to enforce Gauss’s law at each of the two charged
are now rather easy to complete. But we have already resyrfaces.

marked that the linearized theory is not accurate in the re- For example, for an isolated surface of charge density
gime of high charge densities of interest to us. Accordingly(r+>0 we choose the solutioa+ with one limit at infinity

pressure case. The other one enters(Ed) rather trivially,
due to the translation invariance of the PB equation: in Eg.
4.4) we are free to shift, or equivalently multiply by an

we will now improve our theory by solving the full nonlinear
Poisson-Boltzmann equation, and then carry out the ste
just described.

IV. NONLINEAR POISSON-BOLTZMANN THEORY

and the other at, , which we choose by requiring

ps

o4

keT d—
e dz' "t

Zy

A. Basic formulas or

We introduce the useful new variable

2 ~2
o4

(=e. . 495
It will also be convenient to define another nondimensiona

form of the charge density by I'I'he free energy formula analogous to E8.8) is then ob-

tained by substituting Eq4.4) into Eq. (3.5), to get

o=okl2ne=2a/p 4.2 — 82—, (1L )(—1+2,)]
and a nondimensional form of the free energy density by el —1+¢.°
— K ~ +t .
= _ £ (4.3 +20, Ing—_l (nonlinear theory. (4.6
nkgT +

The general solution to the Poisson-Boltzmann equatiod WO Surfaces of the same sign charge will repel to infinite
can be written in terms of elliptic functiontsee, for ex- separation, so we use this formula for each one~separately.
ample,[20]). Fortunately, however, we need only the zero-For a negatively charged surface we simply replace by
pressure solutions, corresponding to two walls that are freﬁ}_| in Eq. (4.5.
to adopt their equilibrium spacint, , and these solutions It is instructive to compare Ed4.6) to the corresponding
consist of elementary functior1,6] formula in the linearized approximation, formula.8) (Fig.

4). While the two formulas agree at low charge density, the
linearized formula overestimates the free energy by almost
an order of magnitude at the high charge densities of interest
to us. The nonlinear PB equation also predicts a narrower
cloud of counterions than the linearized approximation at

+1
i2|n§—

(-1

e (4.4)

At [—o we then havey. — +4/;=+4e” %, precisely the
weak-field solution we found in Sec. lll A. any given charge density.

The Poisson-Boltzman(PB) equation is second order, For two oppositely charged surfaces at their equilibrium
and so its general solution has two integration constants. Wegpacing we can generalize the argument given in Sec. IlIB
have fixed one of these by restricting ourselves to the zercabove, again obtaining E¢3.10. Again suppose first that
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o,<|o_|, and so{,>¢_. By the same logic as in Sec.
[1I B, the potentialis in the gap is just the same as that of an
isolated surface of charge density , but truncated at some
finite £, .

Let us abbreviate the local integrand in E8.5 by ®
= l/lSinhl/l—ZE)Shl/I+2. This is the same for either of the

two solutionsy.. . We thus get

— KO+ — o0
fsemm):rgwawfg dcd

and

T . WL )+ o i +F+dd>
ga;(m,o_)—ﬁ[o_df(s“_) o P(E4)] . {d.

But the last expression just equdlg{o_) — fe(o ). Re-
peating for the opposite case, >|o_|, we get the desired
combination formulg3.10.

B. Thin, impermeable membrane

Proceeding now as in Sec. lll E, we combine E@s2),
(4.3, (4.5, (4.6), (3.10, (3.12, and (3.14 to obtain the
analog of the linearized formulg.18: the nondimensional
free energy density of the membranedielectric system at
its equilibrium spacing’, , as a function of the local mem-
brane charge density, and the net charge density, of
counterions trapped inside the membrane vesicle, is now

(o, ,0)=feef(or—02)
n |f_seli(;t)_f_self(;—)| if ;t>0

f—self(;t) +f—se|1(;7) if ;t<0

[c.Ino,+(1—0o)In(l—0,)].

"B
4.7

Here o= o, + oy, as before and (o) is the function de-
fined by Eq.(4.5), (4.6) evaluated atr=20¢/83. Thus at low
charge densities the first two terms of E4.7) contain fac-
tors of 1/32, and so dominate the laghixing-entropy term,
just as in Eq(3.18.

We can now carry out the program outlined in Sect. Il E
for the illustrative parameter valuesi=1 mM, ag
=0.5 nnf, B=0.006,0_=—3/2, ando, .~ 1/2 discussed
earlier. Figure 5 shows the surface defined by @dr). For
clarity we have shown-f instead off, so that thermody-
namic stability would correspond to an inverted bowl shape
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0.0 0.5
FIG. 5. Free energy density(o, ,oy) for a thin, impermeable
membrane. For easier visualization we have inverted the figure,

rescaled, and added a linear function, plottird (o ,o()/1000
+218.0+ 6.00, —11.40, instead off. The solid curve is the locus

of points whereo=0; points to the left of this curve represent
charge-reversed states. The heavy dot is the paint 4,04,
=(1/2,1/4) representing the average membrane composition chosen
for our illustrative calculation. The two hills in the graph imply, via
the Maxwell construction, that the system’s ground state consists of
two coexisting zones. Since, furthermore, the hills straddle the solid
curve, one of the zones is charge revers@dapted by permission
from [4]. © 1999 American Association for the Advancement of
Science.

this qualitative observation precise, we must now evaluate
Eq. (4.7) along the family of lines specified by E¢3.19,
perform the Maxwell construction on each line, and choose
the value ofp whose tangent line has the lowest valud @it

the pointo .. ,,. Figure 6 shows the result of this analysis for
the illustrative valuep=2.4 and 3.8, and the optimal value
p=2.9.

The figure shows coexistence between a zone wifh
=0.95 and another zone witE(f)=O.25. The latter zone

thus presents total charge densE}/: —0.11 to the outside
of the vesicle. Since this is negative, this zone is charge
reversed and deserves its name as a “nonadhesive” zone.

I_ndeed, the effect is Iargc.eT:t is —45% as great as the charge
o4 a/2=1/4 presented to the outside world when there are
no adhering dielectrics spheres. Recalling that'® + (1

—y)oW=0, ., we find that the adhesion zone covers 36%
of the vesicle. These results were announcedin

C. Finite thickness, bilayer membrane

While the above results are encouraging, and show the
mathematical possibility of a charge-reversal instability, our
model needs considerable refinement before we can take its

We have also tilted t.he graph by adding a convenient'linearesuns seriously. In this subsection we begin this task by
function to —f, to highlight the saddle shape. The linear acknowledging the bilayer character of the membrane and its
function was selected by trial and error. Adding it does noffinite capacitance, both neglected up to this point. The results
change the points of tangency between the surface andijg this section were also announced[#].
straight line. . . N Instead of idealizing the membrane as a thin sheet of
The graph clearly displays the instability we were seek-charge density-, , we now regard it as two sheets of charge
ing. Moreover, one of the two hills on the_surface clearly liesdensityus, and (1-u)o ., representing the charged head-
to the left of the line of charge reversdly,=0}. To make groups of the inner and outer surfactant layers, respectively
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. . ) ) FIG. 7. Free energy density along the optimal lime 2 for a

FIG. 6. Three slices through Fig. 5 along lines passing throughynite thickness, bilayer membrane. The long tick on the abscissa is
the average-composition pointo( ,0v)=(1/2,1/4). The total o, 4, the illustrative value for average bilayer concentration
charge de_nsity seen from outside the membrane is taken tg be studiéd in the text. The point of charge reversaris=0.25, which
=[(1-p)o atpo.]/2 for various values op. Unlike Fig. 5we  is the second point from the left where the graph intercepts the
have not inverted this graph. Two illustrative sliogsay curves  apscissa. Since the tangent point is slightly to the left of this, at
showp=2.4 and 3.8. The black curve, with=2.9, gives the most ;(3)20.247, we again find a slight charge reversal. Again the graph
advantageous mixed state, since its tangent line intersects has peen scaled and shifted to bring out its structure: we have plot-
=0 a~1/2 at the lowest value df; hencep, ~2.9. The dashed (eg the quantityf — 12 750+ 5615, .
line shows coexistence between an adhesion zonea(ﬁfhz 0.95,
covering a fractiony, =0.36 of the vesicle, and a nonadhesive zoneg . __ o 2 o _
with o{"'=0.25. The heavy dot shows the point of charge reversalzz[ o+ (U— 1)U+]2+E{2U0+ In(2uo )
where;t=0. Since the points of tangency lie on opposite sides o
this dot, the nonadhesive zone indeed presents net negative charge + (1—2uc, )In(1—2uc,)+2(1—u)o,
to the outside world. Again the curves have been tilted for viewing o . .
by plotting f/1000+ 10.9, — 15.2. XIn2(1—u)o,+[1-2(1—u)o,]In[1-2(1-u)o, ]}

. (4.9

[see Fig. 1d)]. These two layers of charge are separated by a
dielectric layer of thicknessand dielectric constant,,, cre-  To use our formulas we add E@.9) to Eq.(4.7) and again

ating a capacitor of capacitance= €,/t per area. We will  hold fixed the two conserved quantities. and o,. As be-
estimatec using the value 0.01 p/m? typical for artificial  fore we must optimize over all other variables, in this case
bilayer membranef22] and make the useful abbreviation  justu, before performing the Maxwell construction as in Sec.
IV B. We can simply optimize Eq4.9) overu, sinceu does
not enter Eq(4.7). However, this optimization is subject to
the four inequalities whiclu must obey:

T=tkele,= kelC. (4.9

Then 7=7 at salt concentration=1 mM, or more gener-
ally 7~7+n/(mM).

The free energy formul#4.7) used in Sec. IV B needs
only two simple modifications(1) Since the membrane still
Presents charge qensiy 7110 e interor solion &1d. _ (112,114 hasp~2 [see Eq(319], with poits of tan-
(o . 1), - . .
cf;anged. Now, however, whemy, +uo., is nz)erlzzero[or gency ato'®=0.247 ands'" =0.65. Proceeding as in Sec.

equivalently o+ (u—1)o, #0], there will be a nonzero VB gives coveragey,=63% at equilibrium ando=
electric field in the membrane’s interior, with a capacitive —0.003, or about-1.2% of the charge density presented to
energy cost per area ptr,+ (u—1)o, 12/2c. (2) The mem-  the outside world when no dielectric spheres are present.
brane now consists ofwo fluid monolayers of mixed We can readily understand the qualitative features of
charged and neutral surfactants. Each monolayer has a makfese results. Sinceis large, electric fields inside the mem-
mal density2 f o= €/a,, attained when the density of neu- Prane are energetically costly and the two sides of the mem-

from Eq.(3.12 by density oy, remains nearly uniform, and hence nearly equal

to — o, 5/2, and similarly the inner monolayer chirge den-
sity us,~o04 ,/2. Then the total charge density,~(1
+eee . —u)o,~[(1-u)/2u]o, 4 [see Fig. 1d)], and Eq.(3.19
requires that eitheu=1/2 or p~2. The solutionu=1/2 is
) o _ _ ~unphysical; the solutiop~2 is just what we found numeri-
Casting everything into the nondimensional forms definecta|ly. To reverse its charge, the membrane must allow elec-
above, we see that we must add to the forn{dld) for f the  tric fields in its interiof{see Fig. 1d)]; the high cost of doing
expression this accounts for the very sharp left hand dip in Fig. 7 com-

0<uo,<1/2, 0<(l-u)o, <1/2.

A graphical analysis similar to the one shown in Fig. 6
now gives (Fig. 7) that the best line througho{, o)

kgT [ uo, uo .
Ao \Omaf2  Tmad2
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pared to Fig. 6, and for the greatly reduced degree of charge f
reversal in the finite-thickness case. The charge-reversal ef- 3500
fect diminishes for larger values ef as we predicted in Sec. 3000
[I. According to Eq.(4.8) this means the effect will disappear 2500
either for thick membranes or at large enough ion strength
Numerically we find the critical value to be about 20 mM, 2000
roughly as seen in the experiments[4f5]. 1500
Though the charge-reversal effect seems small, it is 1000
enough to cause the rejection of additional negative dielec- 500
tric spheres. To estimate the magnitude of this effect, con- 5
sider what is needed to increagdrom its equilibrium value 50 100 150 200 °

v, to y,+ 4. To do this we must choose new values of
@+ e® and oW+ €M, subject to the conditior{3.13,
which now reads

FIG. 8. Correction to the self-energy densTgé” from counter-
ion correlations. The upper curve is the Poisson-Boltzmann result
(lower curve of Fig. 4 the lower curve includes the correctidp

— discussed in the text.
(75 + ) (0P + @)+ (1= y, = (o P+ M) =0, 4.

We then minimize the total free ener@yover ¢® and e Thus any isolated planar surface has exactly the same

subject to this constraint, finding that the increas€ when  Potential[Eq. (4.4)] as any other, for>z;. The charge den-
we force a nonequilibrium value of is sity o, enters only via the location, of the surface in the

coordinatez. Given a surface of charge density , we com-

~ 71 _ 71 . .
kaTH 1 1— putez,=«""In¢,, where{, is given by Eq.(4.5). If z,
=2 E(;(f)—;(f))z($+_?+* A8 >z,=0.28 nm, then mean-field theory is everywhere accu-
« (n) () rate and there is no correlated-ion cloud near the surface. In

_ _ the opposite case, that part of the ion cloud lying within the
In this expressiorf ,, de”0t93d2f/d;i|§<f)a etc, andAis  |ayerz, <z<z, will have non-negligible correlations. Since
the total membrane area. Bringing an additiona]u]nz of z, is always positive, this layer is never any thicker than a
negative dielectric into contact with a vesicle of areatypical ion radius, and so may be treated as a two-
47r(10 um)? gives §=0.00083. Evaluating numerically dimensional classical charged g&¥]. This approach may
then givesAF~300kgT, a huge barrier to adhesion, and be regarded as an approximation to other, more refined, cal-

similarly if we pull away 1 wm? of adhering dielectric. culations(e.g., Refs[28,29).
The effect of correlations will be to reduce the free energy
V. EEFECTS OF ION CORRELATIONS density, as ions can avoid each other, reducing their electro-

static self-energy. To apply the results of Totsuiji, originally

The charge density near a highly charged surface can belerived for use in the study of electrons adsorbed onto liquid
come so great as to invalidate the mean-field theory we havikelium[27], we need to know the two-dimensional density
used so far. The resulting changes in the force between twof counterions in the correlated layen.simply equalsr, /e
plates have been the object of intense study since the discominus the total density in the uncorrelated region z,.
ery that the total force can become attractive for fike-  Again using Eqs(4.4) and(3.4) in the latter region, we find
charged plates, in the presence of multivalent counterionta= (o, /e)—0.81 nm 2. If this quantity is negative then
[23,24. The situation we will need to study will be much there simply is no correlated layer ant=0. Defining the
simpler than that one, for two reasons. First, we are interp|asma parameter aEz/B\/ﬁ, the correlation energy
ested only in the free energy densityzeroforce (i.e., equi-  density can then be represented by the interpolation formula
librium). Secondly, our effect has arisen already at the IeveEC:kaTr[_1_07+ 1/(2.2°+1.3)], which is approxi-
of mean-field theory. Since we consider the caseohova-  mately valid over the range OI' <5000 [27]. Figure 8
lent counterions Only, i.e., in the regimes of small to mOder-ShOWS the resu]ting Change in the free energy density, ob-
ate ion interactions, correlation effects will turn out to be atgined from the thermodynamic  formula f .(m)
modest correction to the main, mean-field, contribution.:kang(dF/r)(Ec/kaT) for the correlation contribu-
Thus we are in the regime opposite to that recently studied i, £ _ 1o the free energy density.
Refs.[25,26] _ o When two oppositely charged surfaces face each other,

The criterion for mean-field theory to be valid is roughly e have seen how the minority surface will be stripped of its
that the electrostatic potential energy of two ions at the meapqnterions; the majority surface may, however, have a cor-
lonie, separation be smaller than the@ thermal - energy;eated ion cloud, so we add(m) to its free energy density.
e°n=/4me<kgT, or equivalently thatn../5<1. Any iS0-  since in the situations of interest to us the majority surface is
lated surface, no matter how highly charged, will have ag\ways the dielectric sphere, and simelepends only on the
distance beyond which this criterion is satisfied, and so ougyrface’s chargénot on the presence of the other surface
universal Poisson-Boltzmann solutio@.4) will be valid e find thatthe correlation correction to the free energy of
there. We will call the boundary of this regian=z;. We  the negatively charged dielectric surface is a constamnid
find z; using Eqs(4.4) and(3.4), obtainingz,=0.28 nmfor  may simply be dropped. We do need to include the correla-
our illustrative case of ambient salt concentration tion free energy of the membrane’s interior surface, but for a
=1 mM. finite-thickness membrane this too is nearly a constant, since
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as we have seen the inner monolayer’'s charge density  any domain wall. Referendé] applied this observation to
deviates only slightly fronv, ,/2. Finally, in conditions of  explain the saturation of ball adhesion, and why it occurs
charge reversal theuter monolayer becomes isolated and only for tense vesicles.
can have an ion cloud of its own. Since as we have seen the The analysis suggests a number of experimental tests of
degree of charge reversal is very small, the densityf this  our mechanism. A mixed vesicle adhering to a charged di-
last ion cloud is very small and the correlation contribution iselectric surfacd9] may provide a more controlled geometry
negligible. _ o _ than that of 5]; in this case adhesion saturation suggests the
We have just outlined qualitatively why counterion corre- hossipility of observing an adhering, yet flaccid, vesicle. A

lations may be expected to have little effect on the resuligyore ambitious test could be arranged by washing out the
given in Sec. IV C. Indeed, the numerically calculated graphy,erior solution, replacing it by another of different ion

analogous to Fig. 7 is .not appreciably different from thatstrength but the same osmolarity, while pinning a single

graph, and we do not display it here. vesicle for observation with a micropipette. Our formulas

generalize readily to the case where the ionic stremgt

different inside and outside the vesicle. In this way it may be
We have proposed a theoretical explanation for the phepossible to turn adhesion saturation on and off reversibly.

nomenon of electrostatic adhesion saturation observed ex-

perimentally in[4,5]. While the experimental system has not

VI. DISCUSSION

been systematically explored yet, our model reproduces ACKNOWLEDGMENTS
qualitatively the surprising phenomenon of charge reversal _ ) -
and several salient experimenta| fa@tss] (1) Adhesion We thank R. Brl.“nsma, l. ROUZ|na, and B. Shklovskii for

saturation occurs only withixedbilayer vesicles, that is, at discussions, and especially H. Aranda-Espinoza, N. Dan, T.
mole ratioso, ,, ot too close to zero or unity2) It occurs - Lubensky, L. Ramos, and D. A. Weitz for an earlier col-
only under conditions of sufficiently low salt3) The satu- laboration Igadmg to the ideas presented here. This work was
rated state has a very definite number of adhering objectgUPported in part by NSF Grant No. DMR98-07156 and by
(v, is fixed for each vesicle The Albert Einstein Minerva Center for Theoretical Physics
Our analysis has omitted many familiar colloidal-force @and The Minerva Center for Nonlinear Physics of Complex
effects. Many of these are short-rangéelg., solvation Systems at the Weizmann Institute of Science.
force9, weak compared to electrostatic fordesg., undula-
tion repulsion, or rapidly decreasing with distan¢e.g., van
der Waals forces In addition we have neglected all finite APPENDIX: NOTATION
ion size effects. We believe that our conclusions will be ro-
bust when such effects are introduced, in part because the
crucial physics of charge reversal involves the immediate We work in Sl units. Thus the potential around a point
neighborhood of the left hand dip in Fig. 7, namely, thecharge g in vacuum is ¢(r)=qg/4me,r, where €=
separation between the charge-reversal point and the tagx 10712 F/m. We treat water as a continuum dielectric
gency point. But the distandg between the membrane and with e=80e,; inside the membrane,,~2¢,. The Bjerrum
dielectric diverges as we approach the charge-reversal poifgngth in water is”'g=e?/4mekgT; thus 4m/5=8.7 nm.
from the right, so this physics is controlled by the long-
distance behavior of the forces. Certainly, the exact location Parameters
of the tangent point depends on the right hand part of Fig. 7 i _ ) )
as well, where our theory is not reliable. But this dependence e take for illustration a typical ambient salt concentra-
is small due to the sharpness of the left hand dip in the freéon ofn=1 mM=6x10"* nm™3. Then the inverse Debye
energy density. Even if the right hand side of the graph dif{ength is k= \/ZﬁezlekBTz \/ﬁ (mM)/(9.8 nm). The salt
fers from what we computed, there should be a range ofoncentration inside the vesicle is the same, due to osmotic
membrane compositions , ,, greater than;(f) but low  clamping.
enough to be in the left part of the graph, and hence yielding We suppose a mixture of surfactants, which for simplicity
the sort of zone separation we have studied. have equal area per headgromg=0.5 nnf. Then o
We have examined onlgquilibriumstates. It is quite pos- =2e/a, is the maximum bilayer charge density and the pa-
sible that the experimental system[df5] is not in equilib-  rameter 8=2na,/x=0.006 measures the relative impor-
rium, i.e., that the observed coverages less than the equi- tance of mixing-entropy and electrostatic effects.
librium valuey, because the last one or two balls is initially ~ We use a typical artificial bilayer capacitance of
repelled by a finite free energy barrier. But our goal was t0=0.01 pFum?, which enters only in combination with the
u.nderstand. t.he surprising eX|st.enc.em§/barr|er, nottopre- . brane thicknessviar=txel e, ~7n (MM).
dict a specific value fory, , which in any case depends on For illustration we take the experimentally controllable

the membrane compositid30]. , —
positiqa0] dnole fraction of charged surfactants to be ,,=1/2 and

Finally, we have neglected the interfaces between the a . )
hesion and nonadhesion zones. These interfaces will be Gne-half of the corresponding counterions to be trapped on

microscopicimolecular, or nanometedimensions, since the the vesicle interior, so that, .= o . »/2=1/4. We also take
membrane is not near any critical demixing point. Thus theithe approaching charged dielectric objects to have charge
main effect will be simply to contribute a line energy, like density 50% greater than the membranegar= —3/2.

Constants
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Variables The charge density of a surface determines its Gouy-
Chapman lengthgc=2€ekgT/eo. Various charge densities
We generally denote nondimensionalized quantities withn the text are defined in Fig. 1, for example,= oy,

a bar or tilde: thusr=o/0,,, While o=o«/2ne=2g/8.  +o, . mdenotes the 2Dumberdensity of ions in the dense

Also the free energy density gives rise tof=«f/nkgsT correlated cloud near a surface in turn determines the

[~ . . plasma parametdr=/"g/7rm.
=f/[6x10°kgT (um?)]Vn (mM), while the electrostatic ™ Geometrical quantities include the gap width the total
potential i gives ¢y=eyl/kgT. Various contributions td in-

membrane ared, the fractiony of A in the adhesion zone,
clude the mixing entropy of membrane surfactaigisind the  and its equilibrium valuey, . The distance from a surface
correlation contributiorf .

is sometimes expressed usifig "%
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